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Abstract. Most approaches to cross-modal retrieval (CMR) focus either on ob-
ject-centric datasets, meaning that each document depicts or describes a single
object, or on scene-centric datasets, meaning that each image depicts or describes
a complex scene that involves multiple objects and relations between them. We
posit that a robust CMR model should generalize well across both dataset types.
Despite recent advances in CMR, the reproducibility of the results and their gen-
eralizability across different dataset types has not been studied before. We address
this gap and focus on the reproducibility of the state-of-the-art CMR results when
evaluated on object-centric and scene-centric datasets. We select two state-of-the-
art CMR models with different architectures: (i) CLIP; and (ii) X-VLM. Addi-
tionally, we select two scene-centric datasets, and three object-centric datasets,
and determine the relative performance of the selected models on these datasets.
We focus on reproducibility, replicability, and generalizability of the outcomes of
previously published CMR experiments. We discover that the experiments are not
fully reproducible and replicable. Besides, the relative performance results par-
tially generalize across object-centric and scene-centric datasets. On top of that,
the scores obtained on object-centric datasets are much lower than the scores ob-
tained on scene-centric datasets. For reproducibility and transparency we make
our source code and the trained models publicly available.

1 Introduction

Cross-modal retrieval (CMR) is the task of finding relevant items across different modal-
ities. For example, given an image, find a text or vice versa. The main challenge in CMR
is known as the heterogeneity gap [5, 22]. Since items from different modalities have
different data types, the similarity between them cannot be measured directly. There-
fore, the majority of CMR methods published to date attempt to bridge this gap by
learning a latent representation space, where the similarity between items from differ-
ent modalities can be measured [57].
⋆ Research conducted while the author was at the University of Amsterdam.
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Multicolor boho batic pants
Seagulls sitting on the ledge of a pier 

with people watching
Fig. 1: An object-centric (left) and a scene-centric (right) image-text pair. Sources:
Fashion200k (left); MS COCO (right).

In this work, we specifically focus on image-text CMR, which uses textual and
visual data. The retrieval task is performed on image-text pairs. In each image-text pair,
the text (often referred to as caption) describes the corresponding image it is aligned
with. For image-text CMR we use either an image or a text as a query [57]. Hence,
the CMR task that we address in this paper consists of two subtasks: (i) text-to-image
retrieval: given a text that describes an image, retrieve all the images that match this
description; and (ii) image-to-text retrieval: given an image, retrieve all texts that can
be used to describe this image.
Scene-centric vs. object-centric datasets. Existing image datasets can be grouped into
scene-centric and object-centric datasets [48, 62]. The two types of datasets are typi-
cally used for different tasks, viz. the tasks of scene and object understanding, respec-
tively. They differ in important ways that are of interest to us when evaluating perfor-
mance and generalization abilities of CMR models.

Scene-centric images depict complex scenes that typically feature multiple objects
and relations between them. These datasets contain image-text pairs, where, in each
pair, an image depicts a complex scene of objects and the corresponding text describes
the whole scene, often focusing on relations and activities.

Images in object-centric image datasets are usually focused on a single object of
interest that they primarily depict. This object is often positioned close to the center
of an image with other objects, optionally, in the background. Object-centric datasets
contain image-text pairs, where, in each pair, an image depicts an object of interest and
the corresponding text describes the depicted object and its (fine-grained) attributes.

To illustrate the differences between the two dataset types in CMR, we consider
the examples provided in Fig. 1 with an object-centric image-caption pair (left) and a
scene-centric image-caption pair (right). Note how the pairs differ considerably in terms
of the visual style and the content of the caption. The pair on the left focuses on a single
object (“pants”) and describes its fine-grained visual attributes (“multicolor,” “boho,”
“batic”). The pair on the right captures a scene describing multiple objects (“seagulls,”
“pier,” “people”) and relations between them (“sitting,” “watching”).
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Research goals. We focus on (traditional) CMR methods that extract features from each
modality and learn a common representation space. Recent years have seen extensive
experimentation with such CMR methods, mostly organized into two groups: (i) con-
trastive experiments on object-centric datasets [17], and (ii) contrastive experiments
on scene-centric datasets [35]. In this paper, we consider representative state-of-the-art
CMR methods from both groups. We select two pre-trained models which demonstrate
state-of-the-art performance on CMR task and evaluate them in a zero-shot setting. In
line with designs used in prior reproducibility work on CMR [3] we select two models
for the study. Following the ACM terminology [1], we focus on reproducibility (differ-
ent team, same experimental setup) and replicability (different team, different exper-
imental setup) of previously reported results. And following Voorhees [55], we focus
on relative (a.k.a. comparative) performance results. In addition, for the reproducibility
experiment, we consider the absolute difference between the reported scores and the
reproduced scores.

We address the following research questions: (RQ1) Are published relative perfor-
mance results on CMR reproducible? This question matters because it allows us to
confirm the validity of reported results. We show that the relative performance results
are not fully reproducible. Specifically, the results are reproducible for one dataset, but
not for the other dataset).

We then shift to replicability and examine whether lessons learned on scene-centric
datasets transfer to object-centric datasets: (RQ2) To what extent are the published rel-
ative performance results replicable? That is, we investigate the validity of the reported
results when evaluated in a different setup. We find that relative performance results are
partially replicable, using other datasets.

After investigating the reproducibility and replicability of the results, we consider
the generalizability of the results. We contrastively evaluate the results on object-centric
and scene-centric datasets: (RQ3) Do relative performance results for state-of-the-art
CMR methods generalize from scene-centric datasets to object-centric datasets? We
discover that the relative performance results only partially generalize across the two
dataset types.
Main contributions. Our main contributions are: (i) We are one of the first to con-
sider reproducibility in the context of CMR and reproduce scene-centric CMR experi-
ments from two papers [44, 61] and find that the results are only partially reproducible.
(ii) We perform a replicability study and examine whether relative performance differ-
ences reported for CMR methods generalize from scene-centric datasets to object-cen-
tric datasets. (iii) We investigate the generalizability of obtained results and analyze the
effectiveness of pre-training on scene-centric datasets for improving the performance
of CMR on object-centric datasets, and vice versa. And, finally, (iv) to facilitate the
reproducibility of our work, we provide the code and the pre-trained models used in our
experiments.5

5 https://github.com/mariyahendriksen/ecir23-object-centric-vs-s
cene-centric-CMR

https://github.com/mariyahendriksen/ecir23-object-centric-vs-scene-centric-CMR
https://github.com/mariyahendriksen/ecir23-object-centric-vs-scene-centric-CMR
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2 Related Work

Cross-modal retrieval. CMR methods attempt to construct a multimodal representa-
tion space, where the similarity of concepts from different modalities can be measured.
Some of the earliest approaches in CMR utilised canonical correlation analysis [15, 26].
They were followed by a dual encoder architecture equipped with a recurrent and a con-
volutional component, a hinge loss [12, 58] and hard-negative mining [11]. Later on,
several attention-based architectures were introduced such as architectures with dual
attention [39], stacked cross-attention [31], bidirectional focal attention [36].

Another line of work proposed to use transformer encoders [54] for CMR task [38],
and adapted the BERT model [8] as a backbone [13, 67]. Some other researchers worked
on improving CMR via modality-specific graphs [56], or image and text generation
modules [16].

There is also more domain-specific work that focused on CMR in fashion [14, 28–
30], e-commerce [19, 20], cultural heritage [49] and cooking [56].

In contrast to the majority of prior work on the topic, we focus on the reproducibil-
ity, replicability, and generalizability of CMR methods. In particular, we explore the
state-of-the-art models designed for the CMR task by examining their performance on
scene-centric and object-centric datasets.
Scene-centric and object-centric datasets. The majority of prior work related to object-
centric and scene-centric datasets focuses on computer vision tasks such as object
recognition, object classification, and scene recognition. Herranz et al. [21] investi-
gated biases in a CNN when trained on scene-centric versus object-centric datasets and
evaluated on the task of object classification.

In the context of object detection, prior work focused on combining feature repre-
sentations learned from object-centric and scene-centric datasets to improve the perfor-
mance when detecting small objects [48], and using object-centric images to improve
the detection of objects that do not appear frequently in complex scenes [62]. Finally,
for the task of scene recognition, Zhou et al. [66] explored the quality of feature repre-
sentations learned from both scene-centric and object-centric datasets and applied them
to the task of scene recognition.

Unlike prior work on the topic, in this paper, we focus on both scene-centric and
object-centric datasets for evaluation on CMR task. In particular, we explore how state-
of-the-art (SOTA) CMR models perform on object-centric and scene-centric datasets.
Reproducibility in cross-modal retrieval. To the best of our knowledge, despite the
popularity of the CMR task, there are very few papers that focus on reproducibility
of research in CMR. Some rare (recent) examples include [3], where the authors sur-
vey metric learning losses used in computer vision and explore their applicability for
CMR. Rao et al. [45] analyze contributing factors that affect the performance of the
state-of-the-art CMR models. However, all prior work focuses on exploring model per-
formance only on two popular scene-centric datasets: Microsoft COCO (MS COCO)
and Flickr30k.

In contrast, in this work, we take advantage of the diversity of the CMR datasets and
specifically focus on examining how the state-of-the-art CMR models perform across
different dataset types: scene-centric and object-centric datasets.
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3 Task Definition

We follow the same notation as in previous work [4, 53, 65]. An image-caption cross-
modal dataset consists of a set of images I and texts T where the images and texts are
aligned as image-text pairs: D = {(x1

I , x1
T ), . . . , (xn

I ,x
n
T )}.

The cross-modal retrieval (CMR) task is defined analogous to the standard informa-
tion retrieval task: given a query q and a set of m candidates Ωq = {x1, . . . ,xm} we
aim to rank all the candidates w.r.t. their relevance to the query q. In CMR, the query
can be either a text qT or an image qI : q ∈ {qT ,qI}. Similarly, the set of candidate
items can be either visual Iq ⊂ I, or textual Tq ⊂ T data: Ω ∈ {Iq, Tq}.

The CMR task is performed across modalities, therefore, if the query is a text then
the set of candidates are images, and vice versa. Hence, the task comprises effectively
two subtasks: (i) text-to-image retrieval: given a textual query qT and a set of candidate
images Ω ⊂ I, we aim to rank all instances in the set of candidate items Ω w.r.t. their
relevance to the query qT ; (ii) image-to-text retrieval: given an image as a query qI
and a set of candidate texts Ω ⊂ T , we aim to rank all instances in the set of candidate
items Ω w.r.t. their relevance to the query qI .

4 Methods

In this section, we give an overview of the models included in the study, of the models
which were excluded, and provide justification for it. All the approaches we focus on
belong to the traditional CMR framework and comprise two stages. First, we extract
textual and visual features. The features are typically extracted with a textual encoder
and a visual encoder. Next, we learn a latent representation space where the similarity
of items from different modalities can be measured directly.

4.1 Methods included for comparison

We focus on CMR in zero-shot setting, hence, we only consider pre-trained models.
Therefore, we focus on the models that are released for public use. Besides, as explained
in Section 1, we follow prior reproducibility work to inform our experimental choices
regarding the number of models. Given the above-mentioned requirements, we selected
two methods that demonstrate state-of-the-art performance on the CMR task: CLIP and
X-VLM.
Contrastive Language-Image Pretraining (CLIP) [44]. This model is a dual encoder
that comprises an image encoder, and a text encoder. The model was pre-trained in a
contrastive manner using a symmetric loss function. It is trained on 400 million image-
caption pairs scraped from the internet. The text encoder is a transformer [54] with
modification from [43]. For the image encoder, the authors present two architectures.
The first one is based on ResNet [18] and it is represented in five variants in total.
The first two options are ResNet-50, ResNet-101; the last three options are variants of
ResNet scaled up in the style of EfficientNet [51] The second image encoder architec-
ture is a Vision Transofrmer (ViT) [9]. It is presented in three variants: ViT-B/32, a
ViT-B/16, and a ViT-L/14. The CMR results reported in the original paper are obtained
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with a model configuration where vision transformer ViT-L/14 is used as an image en-
coder, and the text transformer is a text encoder. Hence, we use this configuration in our
experiments.
X-VLM [61]. This model consists of three encoders: an image encoder, a text encoder,
and a cross-modal encoder. The image and text encoder take an image and text as inputs
and output their visual and textual representations. The cross-modal encoder fuses the
output of the image encoder and the output of the text encoder. The fusion is done via
a cross-attention mechanism. For CMR task, the model is fine-tuned via a contrastive
learning loss and a matching loss. All encoders are transformer-based. The image en-
coder is a ViT initialised with Swin Transformerbase [37]. Both the text encoder and the
cross-modal encoder are initialised using different layers of BERT [8]: the text encoder
is initialized using the first six layers, whereas the cross-modal encoder is initialised
using the last six layers.

4.2 Methods excluded from comparison

While selecting the models for the experiments, we considered other architectures with
promising performance on the MS COCO and the Flickr30k datasets. Below, we outline
the architectures we considered and explain why they were not included.

Several models such as Visual N-Grams [32], Unicoder-VL [33], ViLT-B/32 [25],
UNITER [6] were excluded because they were consistently outperformed by CLIP
on the MS COCO and Flickr30k datasets by large margins. Besides, we excluded
ImageBERT [42] because it was outperformed by CLIP on the MS COCO dataset.
ALIGN [23], ALBEF [34], VinVL [64], METER [10] were not included because X-
VLM consistently outperformed them. UNITER [6] was beaten by both CLIP and X-
VLM. We did not include other well-performing models such as ALIGN [23], Flamin-
go [2], CoCa [60] because the pre-trained models were not publicly available.

5 Experimental Setup

In this section, we discuss our experimental design including the choice of datasets,
subtasks, metrics, and implementation details.

5.1 Datasets

We run experiments on two scene-centric and three object-centric datasets. Below, we
discuss each of the datasets in more detail.
Scene-centric datasets. We experiment with two scene-centric datasets: (i) Microsoft
COCO (MS COCO) [35] contains 123,287 images depicting regular scenes from ev-
eryday life with multiple objects placed in their natural contexts. There are 91 different
object types such as “person”, “bicycle”, “apple”. (ii) Flickr30k contains 31,783 im-
ages of regular scenes from everyday life, activities, and events. For both scene-centric
datasets, we use the splits provided in [24]. The MS COCO dataset is split into 113,287
images for training, 5,000 for testing and 5,000 for validation; the Flickr30k dataset has
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29,783 images for training, 1,000 for testing and 1,000 for validation. In both datasets,
every image was annotated with five captions using Amazon Mechanical Turk. Besides,
we select one caption per image randomly and use the test set for our experiments.
Object-centric datasets. We consider three object-centric datasets in our experiments:
(i) Caltech-UCSD Birds 200 (CUB-200) [59] contains 11,788 images of 200 birds
species. Each image is annotated with a fine-grained caption from [46]. We selected
one caption per image randomly. Each caption is at least 10 words long and does
not contain any information about the birds’ species or actions. (ii) Fashion200k con-
tains 209,544 images that depict various fashion items in five product categories (dress,
top, pant, skirt, jacket) and their corresponding descriptions. (iii) Amazon Berkley Ob-
jects (ABO) [7] contains 147,702 product listings associated with 398,212 images. This
dataset was derived from Amazon.com product listings. We selected one image per list-
ing and used the associated product description as its caption. The majority of images
depict a single product on a white background. The product is located in the center of
the image and takes at least 85% of the image area. For all object-centric datasets, we
use the splits provided by the dataset authors and use the test split for our experiments.

5.2 Subtasks

Our goal is to assess and compare the performance of the CMR methods (described in
Section 5) across the object-centric and scene-centric datasets described in the previous
subsection. We design an experimental setup that takes into account two CMR subtasks
and two dataset types. It can be summarized using a tree with branches that correspond
to different configurations (see Fig. 2). We explain how we cover the branches of this
tree in the next subsection.

The tree starts with a root (“Image-text CMR” with label 0) that has sixteen de-
scendants, in total. The root node has two children corresponding to the two image-text
CMR subtasks: text-to-image retrieval (node 1) and image-to-text retrieval (node 2).
Since we want to evaluate each of these subtasks on both object-centric and scene-
centric datasets, nodes 1 and 2 also have two children each, i.e., the nodes {3, 4, 5, 6}.
Finally, every object-centric node has three children: CUB-200, Fashion200k, and ABO
datasets {7, 8, 9, 12, 13, 14}; and every scene-centric node has two children: MS COCO
and Flickr30k datasets {10, 11, 15, 16}.

5.3 Experiments

To answer the research questions introduced in Section 1, we conduct two experiments.
In all the experiments, we use CLIP and X-VLM models in a zero-shot setting. Fol-
lowing [55], we focus on relative performance results. In each experiment, we consider
different subtrees from Fig. 2. Following [25, 32, 33, 44, 61], we use Recall@K where
K = {1, 5, 10} to evaluate the model performance in all our experiments. In addition,
following [50, 52, 63], we calculate the sum of recalls (rsum) for text-to-image, and
image-to-text retrieval tasks as well as the total sum of recalls for both tasks.

For text-to-image retrieval, we first obtain representations for all the candidate im-
ages by passing them through the image encoder of the model. Then we pass each
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CUB-200 Fashion200k ABO MS COCO Flickr30k
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Fig. 2: Our experimental design for evaluating CMR methods across object-centric and
scene-centric datasets. The blue colour indicates parts of the tree used in Experiment 1,
the green color indicates parts of the tree used in Experiment 2, and the red color indi-
cates parts used in all experiments. (Best viewed in color.)

textual query through the text encoder of the model and retrieve the top-k candidates
ranked by cosine similarity w.r.t. the query.

For image-to-text retrieval, we do the reverse, using the texts as candidates and im-
ages as queries. More specifically, we start by obtaining representations of the candidate
captions by passing them through the text encoder. Afterwards, for each of the visual
queries, we pass the query through the image encoder and retrieve top-k candidates
ranked by cosine similarity w.r.t. the query.

In Experiment 1 we evaluate the reproducibility of the CMR results reported in the
original publications (RQ1). Both models we consider (CLIP and X-VLM) were origi-
nally evaluated on two scene-centric datasets, viz. MS COCO and Flickr30k. Therefore,
for our reproducibility study, we also evaluate these models on these two datasets. We
evaluate both text-to-image and image-to-text retrieval. That is, we focus on the two
sub-trees 0←1←4←{10, 11} and 0←2←6←{15, 16} (the red and blue parts of the
tree) from Fig. 2. In addition to relative performance results, we consider absolute dif-
ferences between the reported scores and the reproduced scores. Following Petrov and
Macdonald [41], we assume that the score is reproduced if we obtain a score value equal
to the reported score given a relative tolerance of ±5%.

In Experiment 2 we focus on the replicability of the reported results on object-
centric datasets (RQ2). Thus, we evaluate CLIP and X-VLM on the CUB-200, Fash-
ion200k, and ABO datasets. This experiment covers the subtrees 0←1←3←{7, 8, 9}
and 0←2←5←{12, 13, 14} (the red and green parts of the tree) in Fig. 2.

After obtaining the results from Experiment 1 and 2, we examine the generaliz-
ability of the obtained scores (RQ3). We do so by comparing the relative performance
results the models achieve on the object-centric versus scene-centric datasets. More
specifically, we compare the relative performance of CLIP and X-VLM on CUB-200,
Fashion200k, ABO with their relative performance on MS COCO and Flickr30k. Thus,
this experiment captures the complete tree in Fig. 2.
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Table 1: Results of Experiment 1 (reproducibility study), using the MS COCO and
Flickr30k datasets. “Orig.” indicates the scores from the original publications. “Repr.”
indicates the scores that we obtained.

Text-to-image Image-to-text Rsum

Model R@1 R@5 R@10 R@1 R@5 R@10 t2i i2t total

MS COCO (5k)

O
ri

g. CLIP [44] 37.80 62.40 72.20 58.40 81.50 88.10 172.40 228.00 400.40
X-VLM [61] 55.60 82.70 90.00 70.80 92.10 96.50 228.30 259.40 487.70

R
ep

r. CLIP 21.59 40.22 49.80 24.36 44.13 53.41 111.61 121.90 233.51
X-VLM 42.79 67.61 67.64 64.60 84.48 84.50 178.04 233.58 411.62

Flickr30k (1k)

O
ri

g. CLIP [44] 68.70 90.60 95.20 88.00 98.70 99.40 254.50 286.10 540.60
X-VLM [61] 71.90 93.30 96.40 85.30 97.80 99.60 261.60 282.70 544.30

R
ep

r. CLIP 74.95 93.09 96.15 77.02 94.18 96.84 264.19 268.04 532.23
X-VLM 37.82 82.36 82.48 63.30 91.10 91.10 202.66 245.50 448.16

6 Results

We focus on the reproducibility (different team, same setup) and replicability (different
team, different setup) of the CMR experiments reported in the original papers devoted
to CLIP [44] and X-VLM [61]. To organize our result presentation, we refer to the tree
in Fig. 2. We traverse the tree bottom up, from the leaves to the root.

6.1 RQ1: Reproducibility

To address RQ1, we report on the outcomes of Experiment 1. We investigate to what
extent the CMR results reported in the original papers devoted to CLIP [44] and X-
VLM [61] are reproducible. Given that both methods were originally evaluated on two
scene-centric datasets, viz. MS COCO and Flickr30k, we evaluate the models on the
text-to-image and image-to-text tasks on these two datasets. Therefore, we focus on the
two blue sub-trees 0←1←4←{10, 11} and 0←2←6←{15, 16} from Fig. 2.
Results. The results of Experiment 1 are shown in Table 1. We recall the scores obtained
in the original papers [44, 61] (“Orig.”) and the scores that we obtained (“Repr.”), on
the MS COCO and Flickr30k datasets. Across the board, the scores that we obtained
(the “reproduced scores”) tend to be lower than the scores obtained in the original pub-
lications (the “original scores”).

On the MS COCO dataset, X-VLM consistently outperforms CLIP, both in the orig-
inal publications and in our setup, for both the text-to-image and the image-to-text tasks.
Moreover, this holds for all R@n metrics, and, hence, for the Rsum metrics. Interest-
ingly, the relative gains that we obtain tend to be larger than the ones obtained in the
original publications. For example, our biggest relative difference is for the image-to-
text task in terms of the R@1 metric: according to the scores reported in [44, 61],
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X-VLM outperforms CLIP by 21%, whereas in our experiments the relative gain is
165%.

On average, the original CLIP scores are as much as ∼70% higher than the repro-
duced scores; the original scores for X-VLM are ∼20% higher than the reproduced
ones. When considering the absolute differences between the original scores and the
reproduced scores and assuming a relative tolerance of ±5%, we see that, on the MS
COCO dataset, the scores are not reproducible for both models.

On the Flickr30k dataset, we see a different pattern. For the text-to-image task, the
original results indicate that X-VLM consistently outperforms CLIP, on all R@n met-
rics, but according to our results, the relative order is consistently reversed. For the
image-to-text task, we obtained mixed outcomes: for R@1 and R@5, the original order
(CLIP outperforms X-VLM) is confirmed, but for R@10 the order is swapped. Accord-
ing to our experimental results, however, CLIP consistently outperforms X-VLM on all
tasks, and on all R@n metrics (and hence also on the Rsum metrics).

On the Flickr30k dataset, the CLIP scores are reproduced on the text-to-image and
image-to-text retrieval tasks when the model is evaluated on R@5 and R@10. On the
text-to-image task, the reproduced R@5 score is 2.7% higher than the original score;
the reproduced R@10 score is 1% higher than the original score. For the image-to-
text retrieval task, the reproduced R@5 score is 4% lower than the original score; the
reproduced R@10 score is 2% lower than the original score.
Answer to RQ1. In the case of the CLIP model, the obtained absolute scores were
reproducible only on the Flickr30k dataset for the text-to-image and the image-to-text
tasks when evaluated on R@5 and R@10. For X-VLM, we did not find the absolute
scores obtained when evaluating the model on the MS COCO and Flickr20k datasets to
be reproducible, neither for the text-to-image nor the image-to-text tasks.

The relative outcomes on the MS COCO dataset could be reproduced, for all tasks
and metrics, whereas on the Flickr30k dataset, they could only partially be reproduced,
that is, only for the image-to-text task on the R@1 and R@5 metrics; for the text-
to-image task, X-VLM outperforms CLIP according to the original scores, but CLIP
outperforms X-VLM according to our reproduced scores.
Upshot. As explained in Section 4, in this paper we focus on CMR in a zero-shot set-
ting. This implies that the differences that we observed between the original scores and
the reproduced scores must be due to differences in text and image data (pre-)processing
and loading. We, therefore, recommend that the future work includes (as much as is
practically possible) tools and scripts used in these stages of the experiment with the
publication of its implementations.

6.2 RQ2: Replicability

To answer RQ2, we replicate the originally reported text-to-image and image-to-text
retrieval experiments in a different setup, i.e., by evaluating CLIP and X-VLM using
object-centric datasets instead of scene-centric datasets. Thus, we evaluate CLIP and X-
VLM on the CUB-200, Fashion200k, and ABO datasets and focus on the green subtrees
0←1←3←{7, 8, 9} and 0←2←5←{12, 13, 14} from Fig. 2.
Results. The results of Experiment 2 (aimed at answering RQ2) can be found in Ta-
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Table 2: Results of Experiment 2 (replicability study), using the CUB-200, Fash-
ion200k, and ABO datasets.

Text-to-image Image-to-text Rsum

Model R@1 R@5 R@10 R@1 R@5 R@10 t2i i2t total

CUB-200

CLIP 0.71 2.38 4.42 1.23 3.40 5.48 7.51 10.11 17.62
X-VLM 0.70 2.28 2.45 1.16 2.35 2.45 5.43 5.96 11.39

Fashion200k

CLIP 3.05 8.56 12.85 3.43 9.82 14.56 24.46 27.81 52.27
X-VLM 2.80 6.62 6.70 1.84 3.96 4.04 16.12 09.84 25.96

ABO

CLIP 6.25 13.90 18.50 7.99 18.96 25.57 38.65 52.52 91.17
X-VLM 3.10 6.48 6.56 3.20 7.42 7.50 16.14 18.12 34.26

ble 2. On the CUB-200 dataset, CLIP consistently outperforms X-VLM. The biggest
relative increase is 124% for image-to-text in terms of R@10, while the smallest rel-
ative increase is 1% for text-to-image in terms of R@1. Overall, on the text-to-image
retrieval task, CLIP outperforms X-VLM by 38%, and on the image-to-text retrieval
task, the relative gain is 70%.

On Fashion200k, CLIP outperforms X-VLM, too. The smallest relative increase is
9% for text-to-image in terms of R@1, and the biggest relative increase is 260% for
image-to-text in terms of R@10. In general, on the text-to-image retrieval task, CLIP
outperforms X-VLM by 52%; on the image-to-text retrieval task, the relative gain is
83%.

Finally, on the ABO dataset, CLIP outperforms X-VLM again. The smallest relative
increase is 101% for text-to-image in terms of R@1, and the biggest relative increase
is 241% for image-to-text again in terms of R@10. In general, on the text-to-image
retrieval task, CLIP outperforms X-VLM by 139%; on the image-to-text retrieval task,
the relative gain is 190%. All in all, CLIP outperforms X-VLM on all three scene-
centric datasets. The overall relative gain on CUB-200 dataset is 55%, on Fashion200k
dataset – 101%. The biggest relative gain of 166% is obtained on the ABO dataset.
Answer to RQ2. The outcome of Experiment 2 is clear. The original relative perfor-
mance results obtained on the MS COCO and Flickr30k (Table 1) are only partially
replicable to the CUB-200, Fashion200k, and ABO datasets. On the latter datasets
CLIP consistently outperforms X-VLM by a large margin, whereas the original scores
obtained on the former datasets indicate that X-VLM mostly outperforms CLIP.
Upshot. We hypothesize that the failure to replicate the relative results originally re-
ported for scene-centric datasets (viz. X-VLM outperforms CLIP) is due to CLIP being
pre-trained on more and more diverse image data. We, therefore, recommend that future
work aimed at developing large-scale CMR models quantifies and reports the diversity
of the training data used.
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6.3 RQ3: Generalizability

To answer RQ3, we compare the relative performance of the selected models on object-
centric and scene-centric data. Thus, we compare the relative performance of CLIP and
X-VLM on CUB-200, Fashion200k, ABO with their relative performance on MS COCO
and Flickr30k. We focus on the complete tree from Fig. 2.
Results. The results of our experiments on the scene-centric datasets are in Table 1; the
results that we obtained on the object-centric datasets are in Table 2. On object-centric
datasets, CLIP consistently outperforms X-VLM. However, the situation with scene-
centric results is partially the opposite. There, X-VLM outperforms CLIP on the MS
COCO dataset.
Answer to RQ3. Hence, we answer RQ3 by stating that the relative performance results
for CLIP and X-VLM that we obtained in our experiments only partially generalize
from scene-centric to object-centric datasets. The MS COCO dataset is the odd one
out.6

Upshot. Given the observed differences in relative performance results for CLIP and X-
VLM on scene-centric vs. object-centric datasets, we recommend that CMR be trained
in both scene-centric and object-centric datasets to help improve the generalizability of
experimental outcomes.

7 Discussion & Conclusions

We have examined two SOTA image-text CMR methods, CLIP and X-VLM, by con-
trasting their performance on two scene-centric datasets (MS COCO and Flicrk30k)
and three object-centric datasets (CUB-200, Fashion200k, ABO) in a zero-shot setting.

We focused on the reproducibility of the CMR results reported in the original pub-
lications when evaluated on the selected scene-centric datasets. The reported scores
were not reproducible for X-VLM when evaluated on the MS COCO and the Flickr30k
datasets. For CLIP, we were able to reproduce the scores on the Flickr30k dataset when
evaluated using R@5 and R@10. Conversely, the relative results were reproducible
on the MS COCO dataset, for all metrics and tasks, and partially reproducible on the
Flickr30k dataset only for the image-to-text task when evaluated on R@1 and R@5. We
also examined the replicability of the CMR results using three object-centric datasets.
We discovered that the relative results are replicable when we compare the relative per-
formance on the object-centric datasets with the relative scores on the Flickr30k dataset.
However, for the MS COCO dataset, the relative outcomes were not replicable. And, fi-
nally, we explored the generalizability of the obtained results by comparing the models’
performance on scene-centric vs. object-centric datasets. We observed that the absolute
scores obtained when evaluating models on object-centric datasets are much lower than
the scores obtained on scene-centric datasets.

Our findings demonstrate that the reproducibility of CMR methods on scene-centric

6 On the GitHub repository for CLIP, several issues have been posted related to the performance
of CLIP on the MS COCO dataset. See, e.g., https://github.com/openai/CLIP/i
ssues/115.

https://github.com/openai/CLIP/issues/115
https://github.com/openai/CLIP/issues/115
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datasets is an open problem. Besides, we show that while the majority of CMR methods
are evaluated on the MS COCO and the Flickr30k datasets, the object-centric datasets
represent a challenging and relatively unexplored set of benchmarks.

A limitation of our work is the relatively small number of scene-centric and object-
centric datasets used for the evaluation of the models. Another limitation is that we
only considered CMR in a zero-shot setting, ignoring, e.g., few-shot scenarios; this
limitation did, however, come with the important advantage of reducing the number of
experimental design decisions to be made for contrastive experiments.

A promising direction for future work is to include further datasets when contrasting
the performance of CMR models, both scene-centric and object-centric. In particular, it
would be interesting to investigate the models’ performance on datasets, e.g., Concep-
tual Captions [47], the Flower [40], and the Cars [27] datasets. A natural step after that
would be to consider few-shot scenarios.
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