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1
I N T R O D U C T I O N

Suppose you want to learn more about a certain topic. For the sake of argument, let

us assume this topic is multimodal machine learning for information retrieval. How

would you approach the task? You could continue to read this thesis, attend relevant

lectures, or talk to experts in the field. Essentially, you would seek, gather, and pro-

cess relevant information from diverse sensory inputs or modalities, like visual and

auditory, to develop an understanding of the subject.

This would be possible because our brains are designed to process information from

different sensory inputs in interconnected regions (Binder et al., 2009). A canonical

example of this is the McGurk effect (McGurk and MacDonald, 1976), a perceptual

phenomenon demonstrating how combining of visual and auditory signals influences

speech perception. This cross-modal connectivity extends to how the brain links visual

and linguistic processing. Visual information, processed in the occipital cortex (Grill-

Spector et al., 2001), is closely connected to Wernicke’s area, which is important for

understanding language (Binder, 2015). Studies have shown that our brain integrates

these inputs, enabling us to simultaneously recognize objects and understand their

descriptions (Tomasello et al., 2017).

Inspired by the human ability to learn by processing multimodal sensory inputs, the

goal of multimodal machine learning is to create models that can handle and relate

information from multiple modalities (Baltrusaitis et al., 2019). This research domain

brings some unique challenges due to the heterogeneity gap between different modal-

ities (Carvalho et al., 2018; Hu et al., 2019) and the complementary and redundant

nature of multimodal data (Baltrusaitis et al., 2019).

A key aspect of learning is discovery – the process of seeking and finding rele-

vant information. Humans excel in this task by leveraging their ability to integrate

information from multiple sensory inputs. Similarly, multimodal machine learning

for information retrieval aims to replicate this ability by enabling models to process

and relate data from different modalities (Baltrusaitis et al., 2019; Laenen, 2022). This

1
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approach allows retrieval systems to provide richer, more accurate retrieval results,

mirroring how humans form a clearer understanding by combining various sensory

inputs.

Motivated by this topic, this thesis focuses on multimodal machine learning for

information retrieval as the main task, specifically from a vision and language stand-

point. We are particularly interested in image-text retrieval, a bidirectional retrieval

task across image and text data. We explore three key areas within this domain:

I Dense and Sparse Retrieval: We focus on retrieving information across image and

text data in dense and sparse retrieval settings. We start our investigation by

examining foundation vision-language models and their reproducibility, replica-

bility, and generalizability in the context of the image-text task on both scene-

centric and object-centric datasets. Here, a dataset is called scene-centric if it

depicts complex scenes with multiple objects and their interactions, and object-

centric if features single objects with detailed descriptions (Zhang et al., 2021a;

Shen et al., 2019). We then explore how vision-language models can be adapted

for learned sparse retrieval, addressing the challenges of sparsification in the

vision-language domain. We define vision-language domain as research that in-

tegrates and aligns information from image data and textual data to facilitate

image-text retrieval (Baltrusaitis et al., 2019).

II Representation Learning and Evaluation: We investigate the quality of learned mul-

timodal representation and evaluation procedures. We consider the problem of

learning shortcuts, i.e., easy-to-detect discriminatory features that minimize op-

timization objectives but do not represent all the information needed for solving

the task at hand (Geirhos et al., 2020; Hermann and Lampinen, 2020; Robinson

et al., 2021). We focus on the challenge of shortcut learning in contrastive learn-

ing with multiple captions per image and propose a framework for controlled

investigation of this problem. We continue our investigation by exploring the

brittleness of existing image-text retrieval evaluation pipeline. By brittleness of

an evaluation pipeline we mean the vulnerability of vision-language models to

performance degradation when faced with more complex or varied inputs than

those found in standard benchmarks (Chen et al., 2023b). We are especially in-

terested in brittleness as it relates to concept granularity, by which we mean the

level of detail or specificity in the relationship between images and their corre-

sponding textual descriptions (Laenen et al., 2018; Pesahov et al., 2023). During

our investigation we focus on both existing datasets and evaluation metrics. We

propose an evaluation suite to address the highlighted problems.

III Product Retrieval: We explore the application of multimodal machine learning

in product retrieval. Starting with an analysis of search logs from a European
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e-commerce platform, we examine sessions across different devices, each with a

unique set of modalities. We focus on modelling purchase intent and exploring

how different modalities available on a given device impact user behaviour. Mo-

tivated by our findings, we propose the category-to-image retrieval task, relevant

to e-commerce applications, and develop a model for the task. We investigate

how multimodal representations affect model performance on the task across

categories of varying granularity.

By investigating these core areas, we aim to contribute to the field of multimodal ma-

chine learning for information retrieval through novel algorithmic, empirical, resource,

and theoretical contributions.

1.1 research outline and questions

We center our research around six research questions, each of which we address in a

dedicated chapter of this thesis. Below, we provide an overview of the questions.

We start our investigation in the domain of dense and sparse retrieval. We examine

the reproducibility of image-text cross-modal retrieval results across scene-centric and

object-centric datasets. As we explained earlier in this chapter, scene-centric datasets

depict complex scenes with multiple objects and their interactions, while object-centric

datasets feature single objects with detailed descriptions (Zhang et al., 2021a; Shen

et al., 2019). Previous work on image-text cross-modal retrieval has predominantly

focused on scene-centric benchmarks, leaving object-centric datasets relatively under-

explored (Zhou et al., 2014).

Motivated by this gap, we focus on the reproducibility, replicability, and general-

izability of published relative performance image-text cross-modal retrieval results

across scene-centric and object-centric datasets.

Therefore, we formulate our first research question as follows:

RQ1 To what extent are the published image-text cross-modal retrieval results re-

producible, replicable, and generalizable across scene-centric and object-centric

datasets?

To address this question, we conduct a reproducibility study using two state-of-the-art

cross-modal retrieval models (Zeng et al., 2022; Radford et al., 2021). We evaluate

these models on two scene-centric datasets (Lin et al., 2014; Young et al., 2014) and

three object-centric datasets (Welinder et al., 2010; Collins et al., 2022; Han et al., 2017).

Our results show that while relative performance results are partially reproducible

on scene-centric datasets, they face challenges on object-centric datasets. Besides, the
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absolute performance scores on object-centric datasets are lower compared to scene-

centric datasets. This work highlights the importance of exploration and evaluation

of cross-modal retrieval methods across diverse benchmarks and contributes to our

understanding of the capabilities of cross-modal retrieval models as well as areas for

improvement.

We continue investigating dense and sparse retrieval from the perspective of mul-

timodal learned sparse retrieval. Learned sparse retrieval approaches encode queries

and documents into sparse lexical vectors, offering potential interpretability and lever-

aging traditional inverted index structures (Formal et al., 2021; Formal et al., 2022;

Nguyen et al., 2023b). However, little is known about their generalizability in the

vision-language domain. As we explained earlier in this chapter, we define the vision-

language domain as research that integrates and aligns information from image data

and textual data to facilitate image-text retrieval (Baltrusaitis et al., 2019). Motivated

by this gap, we ask the following research question:

RQ2 How can learned sparse retrieval techniques be applied in the vision-language

domain?

To answer this question, we design a method for multimodal learned sparse retrieval

and investigate its performance on the image-text retrieval task. During the evaluation,

we discover the phenomena of dimension co-activation and semantic deviation, and

propose metrics to quantify them. We further evaluate the model performance using

both already defined and additional metrics. Our findings show that the proposed

method effectively converts dense to sparse representations, and maintains competi-

tiveness with dense models. We demonstrate how the discovered phenomena can be

partially mitigated using query expansion control during training.

We continue our investigation in the space of representation learning and evalua-

tion. We start by considering the problem of shortcut learning in the context of vision-

language contrastive learning with multiple captions per image. As we explained

earlier in this chapter, we define shortcuts as easy-to-detect discriminatory features

that minimize optimization objectives but do not represent all the information needed

for solving the task at hand (Geirhos et al., 2020; Hermann and Lampinen, 2020; Robin-

son et al., 2021). We focus on the situation when all captions associated with an image

contain both shared and caption-specific information. We investigate if it is possible to

contrastively learn task-optimal vision-language representations in this context, and

formulate our research question as follows:

RQ3 In the context of vision-language representation learning with multiple captions

per image, to what extent does the presence of a shortcut hinder learning task-

optimal representations?
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To address this question, we introduce a synthetic shortcuts for vision-language frame-

work, a novel framework which augments image-caption tuples with identifiers that

do not bear any semantic meaning. We use this framework to analyze the extent to

which a vision-language model relies on synthetic shortcuts during training and eval-

uation and explore how shortcut learning can be mitigated. We show that contrastive

vision-language methods tend to depend on shortcuts and suppress task-relevant in-

formation in the context of multiple captions per image.

Next, we address the brittleness of evaluation and benchmarking of vision-language

models on the image-text retrieval task, with a focus on concept granularity (Laenen,

2022; Zhao et al., 2022). As we explained earlier in this chapter, brittleness refers to

the vulnerability of vision-language models to performance degradation when faced

with more complex or varied inputs than those found in standard benchmarks (Chen

et al., 2023b). Concept granularity refers to the level of detail or specificity in the

relationship between images and their corresponding textual descriptions (Laenen et

al., 2018; Pesahov et al., 2023). Current benchmarks often lack the necessary level

of detail in textual descriptions, leading to coarse-grained datasets that may not fully

capture the relationships between images and text (Chen et al., 2023b; Goei et al., 2021).

Motivated by this problem, we ask the following research question:

RQ4 How can we improve the evaluation and benchmarking of vision-language mod-

els on the image-text retrieval task?

To answer this research question, we analyze concept granularity within existing

image-text retrieval benchmarks, comparing them with fine-grained counterparts. We

propose a novel evaluation framework incorporating perturbations and a new met-

ric to capture semantic similarity and cross-modal relationships. We evaluate four

state-of-the-art vision-language models on this framework, assessing reproducibility

and sensitivity to perturbations on both coarse and fine-grained datasets. This work

contributes to our understanding of the impact of concept granularity on model perfor-

mance on the image-text retrieval task and opens up potential directions for refining

evaluation and benchmarking processes for the task.

We shift our investigation to product retrieval and focus on the problem of purchase

intent prediction in a cross-device scenario, where each device represents information

given a unique set of modalities (Montanez et al., 2014). We consider the problem in

the context of anonymous vs. identified sessions. The majority of work on the topic

of predicting purchase intent for product retrieval has focused on known customers,

ignoring anonymous sessions (Tsagkias et al., 2020). Therefore, motivated by this gap,

we aim to answer the following research question:

RQ5 How can we facilitate product retrieval by predicting purchase intent in cross-

device setting?
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To answer this research question, we sample and analyze session logs from a Euro-

pean e-commerce platform and identify purchase intent signals like session duration,

timing, device type, channel, and queries. We design features based on these insights,

develop predictive models for both session types, and evaluate model performance.

This work contributes to our understanding of user behaviour across devices.

Motivated by the findings from the previous chapter, for our final research ques-

tion, we propose and motivate the category-to-image retrieval task. The goal of the

task is to retrieve relevant images of items associated with a given category sampled

from a category tree. The category-to-image retrieval task is important in informa-

tion retrieval, particularly in the context of retrieving images of concepts of varying

granularity (Kondylidis et al., 2021). Users often encounter challenges in matching

textual descriptions with corresponding visual representations across a spectrum of

categories (Tagliabue et al., 2020; Nielsen et al., 2000). This mismatch can lead to sub-

optimal search and recommendation results, affecting overall system performance. To

address this issue, we focus on exploring how building multimodal product represen-

tations can impact the performance on the task. This motivates the research question:

RQ6 How do multimodal document representation, encompassing text, image, and

attribute data, impact the performance on the category-to-image retrieval in the

context of categories of varying granularity?

To answer this research question, we conduct a series of experiments. First, we adapt

an e-commerce dataset containing textual descriptions, images, and attribute informa-

tion of products across a diverse set of categories and prepare a set of unimodal and

bi-modal baselines for the task. Next, we design and implement a multimodal retrieval

model, which combines textual, visual, and attribute information to create product rep-

resentations. We show that multimodal document representation generally improves

performance on the task. Notably, on the most general categories, models incorporat-

ing image information alone demonstrate slightly better performance, highlighting the

relevance of visual cues in identifying broader product categories. This work helps us

to understand how different modalities impact the models’ performance on the task

in the context of concepts of varying granularity.

This concludes the overview of our research questions. In the next section, we

summarize the main contributions of this thesis.

1.2 main contributions

In this section, we summarize the main contributions of this thesis. We divide the

contributions in this thesis into algorithmic, empirical, resource, and theoretical con-
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tributions. Together, these contributions help us gain deeper insights into cross-modal

retrieval, contrastive vision-language representation learning, and product retrieval.

Algorithmic contributions

• We train a lightweight projection head to convert dense to sparse vectors for

multimodal learned sparse retrieval. We show that our sparsified models are

faithful to dense models while delivering competitive results (Chapter 3).

• We propose the framework for synthetic shortcuts in vision-language models, a

novel training and evaluation framework that allows us to inject synthetic short-

cuts into image-text data to measure to what extent contrastive image-text meth-

ods rely on shortcuts to minimize the contrastive optimization objective (Chap-

ter 4).

• We present two shortcut learning reduction methods on our proposed training

and evaluation framework (Chapter 4).

• We propose a novel framework for evaluating vision-language models on the

image-text retrieval task, which includes word-level and caption-level perturba-

tions for model inputs and a cross-modal evaluation metric (Chapter 5).

• We propose CLIP-ITA, the first model specifically designed for the category-to-

image retrieval task. CLIP-ITA leverages multimodal product data such as tex-

tual, visual, and attribute data (Chapter 7).

Empirical contributions

• We investigate reproducibility, replicability and generalizability of cross-modal

retrieval results for scene-centric and object-centric datasets (Chapter 2).

• We evaluate the framework for synthetic shortcuts in vision-language models on

a variety of settings and demonstrate that increasing the number of shortcuts in

the training data induces contrastive image-text methods to rely on these short-

cuts, leading to a suppression of task-relevant information (Chapter 4).

• We examine two shortcut reduction methods (latent target decoding and im-

plicit feature modification) on the framework for synthetic shortcuts in vision-

language models and show that these methods can partially mitigate the shortcut

learning problem in some settings (Chapter 4).

• We evaluate the impact of dataset granularity on the performance of vision-
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language models on the image-text retrieval task using standard benchmarks,

MS-COCO and Flickr-30k, and their fine-grained counterparts (Chapter 5).

• We conduct a comprehensive evaluation of four state-of-the-art vision-language

models using our proposed framework. This includes examining the repro-

ducibility of scores, the impact of perturbations on zero-shot performance on

the image-text retrieval task, and model behaviour with respect to dataset gran-

ularity (Chapter 5).

• We define two feature sets for modelling purchase for product retrieval, tailored

towards anonymous sessions and identified sessions (Chapter 6).

• We evaluate our proposed features by extending an existing production-ready

model and running additional experiments with classifiers generally used for

this task (Chapter 6).

Resource contributions

• We conduct an in-depth analysis of a real-world customer interaction dataset

with more than 95 million sessions, sampled from a large European e-commerce

platform. We identify session features such as device type and conversion rate,

weekday, channel type, and features based on historic customer data to distin-

guish between purchase and non-purchase sessions (Chapter 6).

Theoretical contributions

• We propose a line of research for efficiently converting a multi-modal dense

retrieval model to a multi-modal learned sparse retrieval model (Chapter 3).

• We identify the issues of high dimension co-activation and semantic deviation

and propose a training method to address them (Chapter 3).

• We prove that contrastive losses that enforce minimal sufficient representations

can never learn task-optimal image representations (i.e., representations that con-

tain all task-relevant information in the input captions), in the context of image-

text representation learning with multiple matching captions per image (Chap-

ter 4).

• We propose and motivate the task of category-to-image retrieval, a novel task of

retrieving an image given a category of varying granularity (Chapter 7).
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Multimodal Machine Learning for Information Retrieval
A Vision and Language Perspective

Product RetrievalRepresentation Learning and 
EvaluationDense and Sparse Retrieval 

Chapter 4 Chapter 5 Chapter 6 Chapter 7Chapter 2 Chapter 3

Figure 1.1: Thesis outline w.r.t. its key areas.

1.3 thesis overview

In this section, we present an overview of the thesis and offer guidance on how to

navigate through its contents. The thesis consists of eight chapters, with the current

chapter being the first.

The following six chapters explore core research questions outlined in Section 1.1

and focus on three main themes: dense and sparse retrieval, representation learn-

ing and evaluation, and product retrieval. Figure 1.1 illustrates the chapter structure

mapped to these themes. Each chapter builds upon a single research paper (detailed

in Section 1.4), and can be read independently. Finally, Chapter 8 summarizes the

thesis findings and explores potential future research directions.

1.4 origins

Below we list the publications that are the origins of each chapter.

Chapter 2 is based on the following paper:

• Mariya Hendriksen, Svitlana Vakulenko, Ernst Kuipers, and Maarten de

Rijke. Scene-Centric vs. Object-Centric Image-Text Cross-Modal Retrieval:

A Reproducibility Study. In ECIR 2023: 45th European Conference on Informa-
tion Retrieval (Hendriksen et al., 2023).

MH: Conceptualization, Methodology, Investigation, Software, Writing – Origi-

nal Draft, Writing – Review & Editing, Project Administration. SV: Supervision,

Methodology, Writing – Review & Editing. EK: Supervision, Resources. MdR:

Funding Acquisition, Supervision, Methodology, Writing – Review & Editing.

Chapter 3 is based on the following paper:

• Thong Nguyen, Mariya Hendriksen, Andrew Yates, and Maarten de Rijke.
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Multimodal Learned Sparse Retrieval with Probabilistic Query Expansion.

In ECIR 2024: 46th European Conference on Information Retrieval (Nguyen et al.,

2024).

MH and TN shared first authorship. TN: Conceptualization, Methodology, In-

vestigation, Software, Writing – Original Draft, Writing – Review & Editing. MH:

Conceptualization, Methodology, Investigation, Writing – Original Draft, Writ-

ing – Review & Editing, Project Administration. AY, MdR: Funding Acquisition,

Supervision, Methodology, Writing – Review & Editing.

Chapter 4 is based on the following paper:

• Maurits Bleeker, Mariya Hendriksen, Andrew Yates, and Maarten de Rijke.

Demonstrating and Reducing Shortcuts in Vision-Language Representation

Learning. In TMLR: Transactions on Machine Learning Research (Bleeker et al.,

2024).

MH and MB shared first authorship. MB: Conceptualization, Methodology, In-

vestigation, Software, Writing – Original Draft, Writing – Review & Editing. MH:

Methodology, Formal Analysis, Investigation, Software, Writing – Original Draft,

Writing – Review & Editing, Visualization, Project Administration. AY: Super-

vision, Investigation, Writing – Review & Editing. MdR: Funding Acquisition,

Supervision, Methodology, Writing – Review & Editing.

Chapter 5 is based on the following paper:

• Mariya Hendriksen, Shuo Zhang, Ridho Reinanda, Mohamed Yahya, Edgar

Meij, and Maarten de Rijke. Assessing Brittleness of Image-Text Retrieval

Benchmarks from Vision-Language Models Perspective. Under Submission
(Hendriksen et al., 2024).

MH: Conceptualization, Methodology, Investigation, Software, Writing – Origi-

nal Draft, Writing – Review & Editing, Project Administration. SZ: Conceptu-

alization, Methodology, Writing – Original Draft, Writing – Review & Editing,

Project Administration. RR, MY, EM: Supervision, Investigation, Writing – Re-

view & Editing. MdR: Supervision, Writing – Review & Editing. This work was

done during an internship at Bloomberg AI in 2023.

Chapter 6 is based on the following paper:

• Mariya Hendriksen, Ernst Kuiper, Pim Nauts, Sebastian Schelter, and

Maarten de Rijke. Analyzing and Predicting Purchase Intent in E-commerce:

Anonymous vs. Identified Customers. In Proceedings of the 2020 SIGIR Work-
shop on eCommerce (Hendriksen et al., 2020).
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inal Draft, Writing – Review & Editing, Project Administration. EK, PN, SS:

Supervision, Methodology, Writing – Review & Editing. MdR: Funding Acquisi-

tion, Supervision, Methodology, Writing – Review & Editing.

Chapter 7 is based on the following paper:

• Mariya Hendriksen, Maurits Bleeker, Svitlana Vakulenko, Nanne van

Noord, Ernst Kuipers, and Maarten de Rijke. Extending CLIP for Category-

to-image Retrieval in E-commerce. In ECIR 2022: 44th European Conference
on Information Retrieval (Hendriksen et al., 2022).

MH: Conceptualization, Methodology, Investigation, Software, Writing – Origi-

nal Draft, Writing – Review & Editing, Project Administration. MB: Writing –

Review & Editing. SV, NvN, EK: Supervision, Methodology, Writing – Review
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view & Editing.
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• Mariya Hendriksen, Artuur Leeuwenberg, and Marie-Francine Moens. LSTM

for Dialogue Breakdown Detection: Exploration of Different Model Types and

Word Embeddings. In Increasing Naturalness and Flexibility in Spoken Dialogue
Interaction (Hendriksen et al., 2021).
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2
S C E N E - C E N T R I C V S . O B J E C T- C E N T R I C

I M A G E -T E X T R E T R I E VA L

We start our investigation by considering the reproducibility of image-text cross-modal

retrieval (CMR) results. Reproducibility is important for understanding the robustness

and effectiveness of state-of-the-art (SOTA) CMR methods. In this chapter, we focus

on reproducibility, replicability, and generalizability of CMR results on scene-centric

and object-centric datasets. Scene-centric datasets are collections of image-text pairs

where each image depicts complex scenes containing multiple objects and their inter-

actions. The corresponding text descriptions typically focus on conveying the entire

scene, including the relationships and activities among the depicted objects. Object-
centric datasets, on the other hand, consist of image-text pairs where each image fea-

tures a single object of interest. These objects are often positioned centrally within

the image. The corresponding text descriptions typically describe the depicted object

and its fine-grained attributes. While the majority of work in CMR is conducted using

scene-centric benchmarks, the performance of models on object-centric datasets re-

mains relatively underexplored. Motivated by this gap, we ask the following research

question:

RQ1: To what extent are the published image-text cross-modal retrieval results repro-

ducible, replicable, and generalizable across scene-centric and object-centric datasets?

To answer this RQ, we select two models, CLIP and X-VLM, both models were con-

sidered SOTA on the CMR task at the moment of publication. Next, we evaluate the

selected models on two scene-centric datasets (MS COCO, Flickr30k) and three object-

centric datasets (CUB-200, Fashion200k, and ABO). We show that while relative per-

This chapter was published at the 45
th European Conference on Information Retrieval (ECIR 2023) un-

der the title “Scene-Centric vs. Object-Centric Image-Text Cross-Modal Retrieval: A Reproducibility
Study” (Hendriksen et al., 2023).
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formance results in cross-modal retrieval are partially reproducible on scene-centric

ones when it comes to replicating the results on object-centric datasets, the relative

performance results are not reproducible. Besides, the absolute performance scores on

object-centric datasets are lower compared to scene-centric datasets. Hence, this chap-

ter emphasises the importance of further exploration and evaluation of CMR methods

across diverse benchmarks and contributes to our understanding of the capabilities of

CMR models and areas for improvement.

2.1 introduction

CMR is the task of finding relevant items across different modalities. For example,

given an image, find a text or vice versa. The main challenge in CMR is known as

the heterogeneity gap (Carvalho et al., 2018; Hu et al., 2019). Since items from different

modalities have different data types, the similarity between them cannot be measured

directly. Therefore, the majority of CMR methods published to date attempt to bridge

this gap by learning a latent representation space, where the similarity between items

from different modalities can be measured (Wang et al., 2016a).

In this work, we specifically focus on image-text CMR, which uses textual and visual

data. The retrieval task is performed on image-text pairs. In each image-text pair,

the text (often referred to as caption) describes the corresponding image it is aligned

with. For image-text CMR we use either an image or a text as a query (Wang et al.,

2016a). Hence, the CMR task that we address in this chapter consists of two subtasks:

(i) text-to-image retrieval: given a text that describes an image, retrieve all the images

that match this description; and (ii) image-to-text retrieval: given an image, retrieve all

texts that can be used to describe this image.

Scene-centric vs. object-centric datasets. Existing image datasets can be grouped into

scene-centric and object-centric datasets (Zhang et al., 2021a; Shen et al., 2019). The two

types of datasets are typically used for different tasks, viz. the tasks of scene and object

understanding, respectively. They differ in important ways that are of interest to us

when evaluating performance and generalization abilities of CMR models.

Scene-centric images depict complex scenes that typically feature multiple objects

and relations between them. These datasets contain image-text pairs, where, in each

pair, an image depicts a complex scene of objects and the corresponding text describes

the whole scene, often focusing on relations and activities.

Images in object-centric image datasets are usually focused on a single object of

interest that they primarily depict. This object is often positioned close to the center

of an image with other objects, optionally, in the background. Object-centric datasets

contain image-text pairs, where, in each pair, an image depicts an object of interest
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Multicolor boho batic pants
Seagulls sitting on the ledge of a pier 

with people watching
Figure 2.1: An object-centric (left) and a scene-centric (right) image-text pair. Sources: Fash-
ion200k (left); MS COCO (right).

and the corresponding text describes the depicted object and its (fine-grained) attributes.

To illustrate the differences between the two dataset types in CMR, we consider the

examples provided in Figure 2.1 with an object-centric image-caption pair (left) and

a scene-centric image-caption pair (right). Note how the pairs differ considerably in

terms of the visual style and the content of the caption. The pair on the left focuses on

a single object (“pants”) and describes its fine-grained visual attributes (“multicolor,”

“boho,” “batic”). The pair on the right captures a scene describing multiple objects

(“seagulls,” “pier,” “people”) and relations between them (“sitting,” “watching”).

Research goals. We focus on (traditional) CMR methods that extract features from

each modality and learn a common representation space. Recent years have seen ex-

tensive experimentation with such CMR methods, mostly organized into two groups:

(i) contrastive experiments on object-centric datasets (Han et al., 2017), and (ii) con-

trastive experiments on scene-centric datasets (Lin et al., 2014). In this chapter, we

consider representative state-of-the-art CMR methods from both groups. We select

two pre-trained models which demonstrate state-of-the-art performance on CMR task

and evaluate them in a zero-shot setting. In line with designs used in prior repro-

ducibility work on CMR we select two models for the study. Following the ACM

terminology (ACM, 2020), we focus on reproducibility (different team, same experimen-

tal setup) and replicability (different team, different experimental setup) of previously

reported results. And following Voorhees (2002), we focus on relative (a.k.a. compara-

tive) performance results. In addition, for the reproducibility experiment, we consider

the absolute difference between the reported scores and the reproduced scores.

We address the following research questions: (RQ1.1) Are published relative perfor-

mance results on CMR reproducible? This question matters because it allows us to

confirm the validity of reported results. We show that the relative performance results

are not fully reproducible. Specifically, the results are reproducible for one dataset,

but not for the other dataset.
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We then shift to replicability and examine whether lessons learned on scene-centric

datasets transfer to object-centric datasets: (RQ1.2) To what extent are the published

relative performance results replicable? That is, we investigate the validity of the

reported results when evaluated in a different setup. We find that relative performance

results are partially replicable, using other datasets.

After investigating the reproducibility and replicability of the results, we consider

the generalizability of the results. We contrastively evaluate the results on object-

centric and scene-centric datasets: (RQ1.3) Do relative performance results for state-of-

the-art CMR methods generalize from scene-centric datasets to object-centric datasets?

We discover that the relative performance results only partially generalize across the

two dataset types.

Main contributions. Our main contributions are: (i) We are one of the first to consider

reproducibility in the context of CMR and reproduce scene-centric CMR experiments

from two papers (Radford et al., 2021; Zeng et al., 2022) and find that the results

are only partially reproducible. (ii) We perform a replicability study and examine

whether relative performance differences reported for CMR methods generalize from

scene-centric datasets to object-centric datasets. (iii) We investigate the generalizabil-

ity of obtained results and analyze the effectiveness of pre-training on scene-centric

datasets for improving the performance of CMR on object-centric datasets, and vice

versa. And, finally, (iv) to facilitate the reproducibility of our work, we provide the

code and the pre-trained models used in our experiments

2.2 related work

2.2.1 Cross-Modal Retrieval

CMR methods attempt to construct a multimodal representation space, where the

similarity of concepts from different modalities can be measured. Some of the earliest

approaches in CMR utilised canonical correlation analysis (Gong et al., 2014; Klein

et al., 2014). They were followed by a dual encoder architecture equipped with a

recurrent and a convolutional component, a hinge loss (Frome et al., 2013; Wang et

al., 2016b) and hard-negative mining (Faghri et al., 2018). Later on, several attention-

based architectures were introduced such as architectures with dual attention (Nam

et al., 2017), stacked cross-attention (Lee et al., 2018), bidirectional focal attention (Liu

et al., 2019).

Another line of work proposed to use transformer encoders (Vaswani et al., 2017)

for CMR task (Messina et al., 2021), and adapted the BERT model (Devlin et al., 2019)

as a backbone (Gao et al., 2020; Zhuge et al., 2021). Some other researchers worked on
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improving CMR via modality-specific graphs (Wang et al., 2021b), or image and text

generation modules (Gu et al., 2018).

There is also more domain-specific work that focused on CMR in fashion (Laenen et

al., 2018; Laenen et al., 2017; Goei et al., 2021; Laenen, 2022), e-commerce (Hendriksen,

2022), cultural heritage (Sheng et al., 2021b) and cooking (Wang et al., 2021b).

In contrast to the majority of prior work on the topic, we focus on the reproducibility,

replicability, and generalizability of CMR methods. In particular, we explore the state-

of-the-art models designed for the CMR task by examining their performance on scene-

centric and object-centric datasets.

2.2.2 Scene-Centric and Object-Centric Datasets

The majority of prior work related to object-centric and scene-centric datasets focuses

on computer vision tasks such as object recognition, object classification, and scene

recognition. Herranz et al. (2016) investigated biases in a CNN when trained on scene-

centric versus object-centric datasets and evaluated on the task of object classification.

In the context of object detection, prior work focused on combining feature repre-

sentations learned from object-centric and scene-centric datasets to improve the per-

formance when detecting small objects (Shen et al., 2019), and using object-centric

images to improve the detection of objects that do not appear frequently in complex

scenes (Zhang et al., 2021a). Finally, for the task of scene recognition, Zhou et al.

(2014) explored the quality of feature representations learned from both scene-centric

and object-centric datasets and applied them to the task of scene recognition.

Unlike prior work on the topic, in this chapter, we focus on both scene-centric and

object-centric datasets for evaluation on CMR task. In particular, we explore how

SOTA CMR models perform on object-centric and scene-centric datasets.

2.2.3 Reproducibility in Cross-Modal Retrieval

To the best of our knowledge, despite the popularity of the CMR task, there are very

few papers that focus on reproducibility of research in CMR. Some rare (recent) ex-

amples include Rao et al. (2022), where the authors analyze contributing factors that

affect the performance of the state-of-the-art CMR models. However, all prior work

focuses on exploring model performance only on two popular scene-centric datasets:

Microsoft COCO (MS COCO) (Lin et al., 2014) and Flickr30k (Young et al., 2014).

In contrast, in this chapter, we take advantage of the diversity of the CMR datasets

and specifically focus on examining how the state-of-the-art CMR models perform

across different dataset types: scene-centric and object-centric datasets.
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2.3 task definition

We follow the same notation as in previous work (Zhang et al., 2022c; Varamesh et

al., 2020; Brown et al., 2020). An image-caption cross-modal dataset consists of a set

of images I and texts T where the images and texts are aligned as image-text pairs:

D = {(x1
I , x1

T ), . . . , (xn
I , xn
T )}.

The cross-modal retrieval (CMR) task is defined analogous to the standard information

retrieval task: given a query q and a set of m candidates Ωq = {x1, . . . , xm} we aim to

rank all the candidates w.r.t. their relevance to the query q. In CMR, the query can be

either a text qT or an image qI : q ∈ {qT , qI}. Similarly, the set of candidate items

can be either visual Iq ⊂ I , or textual Tq ⊂ T data: Ω ∈ {Iq, Tq}.
The CMR task is performed across modalities, therefore, if the query is a text then

the set of candidates are images, and vice versa. Hence, the task comprises effectively

two subtasks: (i) text-to-image retrieval: given a textual query qT and a set of candidate

images Ω ⊂ I , we aim to rank all instances in the set of candidate items Ω w.r.t. their

relevance to the query qT ; (ii) image-to-text retrieval: given an image as a query qI and

a set of candidate texts Ω ⊂ T , we aim to rank all instances in the set of candidate

items Ω w.r.t. their relevance to the query qI .

2.4 methods

In this section, we give an overview of the models included in the study, of the models

which were excluded, and provide justification for it. All the approaches we focus on

belong to the traditional CMR framework and comprise two stages. First, we extract

textual and visual features. The features are typically extracted with a textual encoder

and a visual encoder. Next, we learn a latent representation space where the similarity

of items from different modalities can be measured directly.

2.4.1 Methods Included for Comparison

We focus on CMR in zero-shot setting, hence, we only consider pre-trained models.

Therefore, we focus on the models that are released for public use. Besides, as ex-

plained in Section 6.1, we follow prior reproducibility work to inform our experimen-

tal choices regarding the number of models. Given the above-mentioned requirements,

we selected two methods that demonstrate state-of-the-art performance on the CMR

task: CLIP and X-VLM.

Contrastive Language-Image Pretraining (CLIP) (Radford et al., 2021). This model
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is a dual encoder that comprises an image encoder, and a text encoder. The model

was pre-trained in a contrastive manner using a symmetric loss function. It is trained

on 400 million image-caption pairs scraped from the internet. The text encoder is

a transformer (Vaswani et al., 2017) with modification from (Radford et al., 2019).

For the image encoder, the authors present two architectures. The first one is based

on ResNet (He et al., 2016) and it is represented in five variants in total. The first

two options are ResNet-50, ResNet-101; the last three options are variants of ResNet

scaled up in the style of EfficientNet (Tan and Le, 2019) The second image encoder

architecture is a vision transformer (ViT) (Dosovitskiy et al., 2021). It is presented in

three variants: ViT-B/32, a ViT-B/16, and a ViT-L/14. The CMR results reported in the

original paper are obtained with a model configuration where vision transformer ViT-

L/14 is used as an image encoder, and the text transformer is a text encoder. Hence,

we use this configuration in our experiments.

X-VLM (Zeng et al., 2022). This model consists of three encoders: an image encoder,

a text encoder, and a cross-modal encoder. The image and text encoder take an image

and text as inputs and output their visual and textual representations. The cross-modal

encoder fuses the output of the image encoder and the output of the text encoder. The

fusion is done via a cross-attention mechanism. For CMR task, the model is fine-tuned

via a contrastive learning loss and a matching loss. All encoders are transformer-based.

The image encoder is a ViT initialised with Swin Transformerbase (Liu et al., 2021). Both

the text encoder and the cross-modal encoder are initialised using different layers of

BERT (Devlin et al., 2019): the text encoder is initialized using the first six layers,

whereas the cross-modal encoder is initialised using the last six layers.

2.4.2 Methods Excluded from Comparison

While selecting the models for the experiments, we considered other architectures

with promising performance on the MS COCO and the Flickr30k datasets. Below, we

outline the architectures we considered and explain why they were not included.

Several models such as Visual N-Grams (Li et al., 2017), Unicoder-VL (Li et al.,

2020a), ViLT-B/32 (Kim et al., 2021), UNITER (Chen et al., 2020b) were excluded be-

cause they were consistently outperformed by CLIP on the MS COCO and Flickr30k

datasets by large margins. Besides, we excluded ImageBERT (Qi et al., 2020) because

it was outperformed by CLIP on the MS COCO dataset. ALIGN (Jia et al., 2021), AL-

BEF (Li et al., 2021a), VinVL (Zhang et al., 2021b), METER (Dou et al., 2022) were not in-

cluded because X-VLM consistently outperformed them. UNITER (Chen et al., 2020b)

was beaten by both CLIP and X-VLM. We did not include other well-performing mod-

els such as ALIGN (Jia et al., 2021), Flamingo (Alayrac et al., 2022), CoCa (Yu et al.,
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2022) because the pre-trained models were not publicly available.

2.5 experimental setup

In this section, we discuss our experimental design including the choice of datasets,

subtasks, metrics, and implementation details.

2.5.1 Datasets

We run experiments on two scene-centric and three object-centric datasets. Below, we

discuss each of the datasets in more detail.

Scene-centric datasets. We experiment with two scene-centric datasets: (i) Microsoft

COCO (MS COCO) (Lin et al., 2014) contains 123,287 images depicting regular scenes

from everyday life with multiple objects placed in their natural contexts. There are

91 different object types such as “person”, “bicycle”, “apple”. (ii) Flickr30k (Young

et al., 2014) contains 31,783 images of regular scenes from everyday life, activities, and

events. For both scene-centric datasets, we use the splits provided in (Karpathy and

Li, 2015). The MS COCO dataset is split into 113,287 images for training, 5,000 for

testing and 5,000 for validation; the Flickr30k dataset has 29,783 images for training,

1,000 for testing and 1,000 for validation. In both datasets, every image was annotated

with five captions using Amazon Mechanical Turk. Besides, we select one caption per

image randomly and use the test set for our experiments.

Object-centric datasets. We consider three object-centric datasets in our experiments:

(i) Caltech-UCSD Birds 200 (CUB-200) (Welinder et al., 2010) contains 11,788 images

of 200 birds species. Each image is annotated with a fine-grained caption from (Reed

et al., 2016). We selected one caption per image randomly. Each caption is at least 10

words long and does not contain any information about the birds’ species or actions.

(ii) Fashion200k (Han et al., 2017) contains 209,544 images that depict various fashion

items in five product categories (dress, top, pant, skirt, jacket) and their corresponding

descriptions. (iii) Amazon Berkley Objects (ABO) (Collins et al., 2022) contains 147,702

product listings associated with 398,212 images. This dataset was derived from Ama-

zon.com product listings. We selected one image per listing and used the associated

product description as its caption. The majority of images depict a single product on

a white background. The product is located in the center of the image and takes at

least 85% of the image area. For all object-centric datasets, we use the splits provided

by the dataset authors and use the test split for our experiments.
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Figure 2.2: Our experimental design for evaluating CMR methods across object-centric and
scene-centric datasets. The blue colour indicates parts of the tree used in Experiment 1, the
green color indicates parts of the tree used in Experiment 2, and the red color indicates parts
used in all experiments. (Best viewed in color.)

2.5.2 Subtasks

Our goal is to assess and compare the performance of the CMR methods (described

in Section 2.4) across the object-centric and scene-centric datasets described in the

previous subsection. We design an experimental setup that takes into account two

CMR subtasks and two dataset types. It can be summarized using a tree with branches

that correspond to different configurations (see Figure 2.2). We explain how we cover

the branches of this tree in the next subsection.

The tree starts with a root (“Image-text CMR” with label 0) that has sixteen descen-

dants, in total. The root node has two children corresponding to the two image-text

CMR subtasks: text-to-image retrieval (node 1) and image-to-text retrieval (node 2).

Since we want to evaluate each of these subtasks on both object-centric and scene-

centric datasets, nodes 1 and 2 also have two children each, i.e., the nodes {3, 4, 5, 6}.
Finally, every object-centric node has three children: CUB-200, Fashion200k, and ABO

datasets {7, 8, 9, 12, 13, 14}; and every scene-centric node has two children: MS COCO

and Flickr30k datasets {10, 11, 15, 16}.

2.5.3 Experiments

To answer the research questions introduced in Section 6.1, we conduct two experi-

ments. In all the experiments, we use CLIP and X-VLM models in a zero-shot setting.

Following (Voorhees, 2002), we focus on relative performance results. In each experi-

ment, we consider different subtrees from Figure 2.2. Following (Radford et al., 2021;

Zeng et al., 2022; Li et al., 2017; Kim et al., 2021), we use Recall@K where K = {1, 5, 10}
to evaluate the model performance in all our experiments. In addition, following (Ueki,
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2021; Zhang et al., 2022b; Song and Choi, 2021), we calculate the sum of recalls (rsum)

for text-to-image, and image-to-text retrieval tasks as well as the total sum of recalls

for both tasks.

For text-to-image retrieval, we first obtain representations for all the candidate im-

ages by passing them through the image encoder of the model. Then we pass each

textual query through the text encoder of the model and retrieve the top-k candidates

ranked by cosine similarity w.r.t. the query.

For image-to-text retrieval, we do the reverse, using the texts as candidates and

images as queries. More specifically, we start by obtaining representations of the can-

didate captions by passing them through the text encoder. Afterwards, for each of

the visual queries, we pass the query through the image encoder and retrieve top-k
candidates ranked by cosine similarity w.r.t. the query.

In Experiment 1 we evaluate the reproducibility of the CMR results reported in the

original publications (RQ1.1). Both models we consider (CLIP and X-VLM) were orig-

inally evaluated on two scene-centric datasets, viz. MS COCO (Lin et al., 2014) and

Flickr30k (Young et al., 2014). Therefore, for our reproducibility study, we also evaluate

these models on these two datasets. We evaluate both text-to-image and image-to-text

retrieval. That is, we focus on the two sub-trees 0←1←4←{10, 11} and 0←2←6←{15,

16} (the red and blue parts of the tree) from Figure 2.2. In addition to relative perfor-

mance results, we consider absolute differences between the reported scores and the

reproduced scores. Following Petrov and Macdonald (2022), we assume that the score

is reproduced if we obtain a score value equal to the reported score given a relative

tolerance of ±5%.

In Experiment 2 we focus on the replicability of the reported results on object-centric

datasets (RQ1.2). Thus, we evaluate CLIP and X-VLM on the CUB-200 (Welinder et al.,

2010), Fashion200k (Han et al., 2017), and ABO (Collins et al., 2022) datasets. This

experiment covers the subtrees 0←1←3←{7, 8, 9} and 0←2 ←5←{12, 13, 14} (the red

and green parts of the tree) in Figure 2.2.

After obtaining the results from Experiment 1 and 2, we examine the generalizability

of the obtained scores (RQ1.3). We do so by comparing the relative performance results

the models achieve on the object-centric versus scene-centric datasets. More specifi-

cally, we compare the relative performance of CLIP and X-VLM on CUB-200 (Welin-

der et al., 2010), Fashion200k (Han et al., 2017), ABO (Collins et al., 2022) with their

relative performance on MS COCO (Lin et al., 2014) and Flickr30k (Young et al., 2014).

Thus, this experiment captures the complete tree in Figure 2.2.
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Table 2.1: Results of Experiment 1 (reproducibility study), using the MS COCO and Flickr30k
datasets . “Orig.” indicates the scores from the original publications. “Repr.” indicates the
scores that we obtained.

Text-to-image Image-to-text Rsum

Model R@1 R@5 R@10 R@1 R@5 R@10 t2i i2t total

MS COCO (5k)

O
ri

g. CLIP (Radford et al., 2021) 37.80 62.40 72.20 58.40 81.50 88.10 172.40 228.00 400.40

X-VLM (Zeng et al., 2022) 55.60 82.70 90.00 70.80 92.10 96.50 228.30 259.40 487.70

R
ep

r. CLIP 21.59 40.22 49.80 24.36 44.13 53.41 111.61 121.90 233.51

X-VLM 42.79 67.61 67.64 64.60 84.48 84.50 178.04 233.58 411.62

Flickr30k (1k)

O
ri

g. CLIP 68.70 90.60 95.20 88.00 98.70 99.40 254.50 286.10 540.60

X-VLM 71.90 93.30 96.40 85.30 97.80 99.60 261.60 282.70 544.30

R
ep

r. CLIP 74.95 93.09 96.15 77.02 94.18 96.84 264.19 268.04 532.23

X-VLM 37.82 82.36 82.48 63.30 91.10 91.10 202.66 245.50 448.16

2.6 results

We focus on the reproducibility (different team, same setup) and replicability (different

team, different setup) of the CMR experiments reported in the original papers devoted

to CLIP (Radford et al., 2021) and X-VLM (Zeng et al., 2022). To organize our result

presentation, we refer to the tree in Figure 2.2. We traverse the tree bottom up, from

the leaves to the root.

2.6.1 RQ1.1: Reproducibility

To address RQ1.1, we report on the outcomes of Experiment 1. We investigate to what

extent the CMR results reported in the original papers devoted to CLIP (Radford et al.,

2021) and X-VLM (Zeng et al., 2022) are reproducible. Given that both methods were

originally evaluated on two scene-centric datasets, viz. MS COCO (Lin et al., 2014) and

Flickr30k (Young et al., 2014), we evaluate the models on the text-to-image and image-

to-text tasks on these two datasets. Therefore, we focus on the two blue sub-trees

0←1←4←{10, 11} and 0←2←6←{15, 16} from Figure 2.2.

Results. The results of Experiment 1 are shown in Table 2.1. We recall the scores

obtained in the original papers (Radford et al., 2021; Zeng et al., 2022) (“Orig.”) and

the scores that we obtained (“Repr.”), on the MS COCO and Flickr30k datasets. Across

the board, the scores that we obtained (the “reproduced scores”) tend to be lower than

the scores obtained in the original publications (the “original scores”).

On the MS COCO dataset, X-VLM consistently outperforms CLIP, both in the orig-

inal publications and in our setup, for both the text-to-image and the image-to-text
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tasks. Moreover, this holds for all R@n metrics, and, hence, for the Rsum metrics. In-

terestingly, the relative gains that we obtain tend to be larger than the ones obtained in

the original publications. For example, our biggest relative difference is for the image-

to-text task in terms of the R@1 metric: according to the scores reported in (Zeng

et al., 2022; Radford et al., 2021), X-VLM outperforms CLIP by 21%, whereas in our

experiments the relative gain is 165%.

On average, the original CLIP scores are as much as ∼70% higher than the repro-

duced scores; the original scores for X-VLM are ∼20% higher than the reproduced

ones. When considering the absolute differences between the original scores and the

reproduced scores and assuming a relative tolerance of ±5%, we see that, on the MS

COCO dataset, the scores are not reproducible for both models.

On the Flickr30k dataset, we see a different pattern. For the text-to-image task, the

original results indicate that X-VLM consistently outperforms CLIP, on all R@n metrics,

but according to our results, the relative order is consistently reversed. For the image-

to-text task, we obtained mixed outcomes: for R@1 and R@5, the original order (CLIP

outperforms X-VLM) is confirmed, but for R@10 the order is swapped. According to

our experimental results, however, CLIP consistently outperforms X-VLM on all tasks,

and on all R@n metrics (and hence also on the Rsum metrics).

On the Flickr30k dataset, the CLIP scores are reproduced on the text-to-image and

image-to-text retrieval tasks when the model is evaluated on R@5 and R@10. On the

text-to-image task, the reproduced R@5 score is 2.7% higher than the original score;

the reproduced R@10 score is 1% higher than the original score. For the image-to-

text retrieval task, the reproduced R@5 score is 4% lower than the original score; the

reproduced R@10 score is 2% lower than the original score.

Answer to RQ1.1. In the case of the CLIP model, the obtained absolute scores were

reproducible only on the Flickr30k dataset for the text-to-image and the image-to-text

tasks when evaluated on R@5 and R@10. For X-VLM, we did not find the absolute

scores obtained when evaluating the model on the MS COCO and Flickr20k datasets

to be reproducible, neither for the text-to-image nor the image-to-text tasks.

The relative outcomes on the MS COCO dataset could be reproduced, for all tasks

and metrics, whereas on the Flickr30k dataset, they could only partially be repro-

duced, that is, only for the image-to-text task on the R@1 and R@5 metrics; for the

text-to-image task, X-VLM outperforms CLIP according to the original scores, but

CLIP outperforms X-VLM according to our reproduced scores.

Upshot. As explained in Section 2.4, in this chapter we focus on CMR in a zero-

shot setting. This implies that the differences that we observed between the original

scores and the reproduced scores must be due to differences in text and image data

processing and loading. We, therefore, recommend that the future work includes (as

much as is practically possible) tools and scripts used in these stages of the experiment
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with the publication of its implementations.

2.6.2 RQ1.2: Replicability

To answer RQ1.2, we replicate the originally reported text-to-image and image-to-text

retrieval experiments in a different setup, i.e., by evaluating CLIP and X-VLM using

object-centric datasets instead of scene-centric datasets. Thus, we evaluate CLIP and

X-VLM on the CUB-200 (Welinder et al., 2010), Fashion200k (Han et al., 2017), and

ABO (Collins et al., 2022) datasets and focus on the green subtrees 0←1←3←{7, 8, 9}

and 0←2←5←{12, 13, 14} from Figure 2.2.

Results. The results of Experiment 2 (aimed at answering RQ1.2) can be found in Ta-

ble 2.2. On the CUB-200 (Welinder et al., 2010) dataset, CLIP consistently outperforms

X-VLM. The biggest relative increase is 124% for image-to-text in terms of R@10, while

the smallest relative increase is 1% for text-to-image in terms of R@1. Overall, on the

text-to-image retrieval task, CLIP outperforms X-VLM by 38%, and on the image-to-

text retrieval task, the relative gain is 70%.

On Fashion200k (Han et al., 2017), CLIP outperforms X-VLM, too. The smallest rel-

ative increase is 9% for text-to-image in terms of R@1, and the biggest relative increase

is 260% for image-to-text in terms of R@10. In general, on the text-to-image retrieval

task, CLIP outperforms X-VLM by 52%; on the image-to-text retrieval task, the relative

gain is 83%.

Finally, on the ABO (Collins et al., 2022) dataset, CLIP outperforms X-VLM again.

The smallest relative increase is 101% for text-to-image in terms of R@1, and the biggest

relative increase is 241% for image-to-text again in terms of R@10. In general, on the

text-to-image retrieval task, CLIP outperforms X-VLM by 139%; on the image-to-text

retrieval task, the relative gain is 190%. All in all, CLIP outperforms X-VLM on all

three scene-centric datasets. The overall relative gain on CUB-200 (Welinder et al.,

2010) dataset is 55%, on Fashion200k (Han et al., 2017) dataset – 101%. The biggest

relative gain of 166% is obtained on the ABO (Collins et al., 2022) dataset.

Answer to RQ1.2. The outcome of Experiment 2 is clear. The original relative perfor-

mance results obtained on the MS COCO and Flickr30k (Table 2.1) are only partially

replicable to the CUB-200, Fashion200k, and ABO datasets. On the latter datasets

CLIP consistently outperforms X-VLM by a large margin, whereas the original scores

obtained on the former datasets indicate that X-VLM mostly outperforms CLIP.

Upshot. We hypothesize that the failure to replicate the relative results originally

reported for scene-centric datasets (viz. X-VLM outperforms CLIP) is due to CLIP

being pre-trained on more and more diverse image data. We, therefore, recommend

that future work aimed at developing large-scale CMR models quantifies and reports
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Table 2.2: Results of Experiment 2 (replicability study), using the CUB-200, Fashion200k, and
ABO datasets.

Text-to-image Image-to-text Rsum

Model R@1 R@5 R@10 R@1 R@5 R@10 t2i i2t total

CUB-200

CLIP 0.71 2.38 4.42 1.23 3.40 5.48 7.51 10.11 17.62

X-VLM 0.70 2.28 2.45 1.16 2.35 2.45 5.43 5.96 11.39

Fashion200k

CLIP 3.05 8.56 12.85 3.43 9.82 14.56 24.46 27.81 52.27

X-VLM 2.80 6.62 6.70 1.84 3.96 4.04 16.12 09.84 25.96

ABO

CLIP 6.25 13.90 18.50 7.99 18.96 25.57 38.65 52.52 91.17

X-VLM 3.10 6.48 6.56 3.20 7.42 7.50 16.14 18.12 34.26

the diversity of the training data used.

2.6.3 RQ1.3: Generalizability

To answer RQ1.3, we compare the relative performance of the selected models on

object-centric and scene-centric data. Thus, we compare the relative performance of

CLIP and X-VLM on CUB-200 (Welinder et al., 2010), Fashion200k (Han et al., 2017),

ABO (Collins et al., 2022) with their relative performance on MS COCO (Lin et al.,

2014) and Flickr30k (Young et al., 2014). We focus on the complete tree from Figure 2.2.

Results. The results of our experiments on the scene-centric datasets are in Table 2.1;

the results that we obtained on the object-centric datasets are in Table 2.2. On object-

centric datasets, CLIP consistently outperforms X-VLM. However, the situation with

scene-centric results is partially the opposite. There, X-VLM outperforms CLIP on the

MS COCO dataset.

Answer to RQ1.3. Hence, we answer RQ1.3 by stating that the relative performance

results for CLIP and X-VLM that we obtained in our experiments only partially gen-

eralize from scene-centric to object-centric datasets. The MS COCO dataset is the odd

one out.1

Upshot. Given the observed differences in relative performance results for CLIP and X-

VLM on scene-centric vs. object-centric datasets, we recommend that CMR be trained

1 On the GitHub repository for CLIP, several issues have been posted related to the performance of CLIP
on the MS COCO dataset. See, e.g., https://github.com/openai/CLIP/issues/115.
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in both scene-centric and object-centric datasets to help improve the generalizability

of experimental outcomes.

2.7 discussion and conclusion

We have examined two SOTA image-text CMR methods, CLIP and X-VLM, by con-

trasting their performance on two scene-centric datasets (MS COCO and Flicrk30k)

and three object-centric datasets (CUB-200, Fashion200k, ABO) in a zero-shot setting.

We focused on the reproducibility of the CMR results reported in the original pub-

lications when evaluated on the selected scene-centric datasets. The reported scores

were not reproducible for X-VLM when evaluated on the MS COCO and the Flickr30k

datasets. For CLIP, we were able to reproduce the scores on the Flickr30k dataset when

evaluated using R@5 and R@10. Conversely, the relative results were reproducible on

the MS COCO dataset, for all metrics and tasks, and partially reproducible on the

Flickr30k dataset only for the image-to-text task when evaluated on R@1 and R@5. We

also examined the replicability of the CMR results using three object-centric datasets.

We discovered that the relative results are replicable when we compare the relative

performance on the object-centric datasets with the relative scores on the Flickr30k

dataset. However, for the MS COCO dataset, the relative outcomes were not replica-

ble. And, finally, we explored the generalizability of the obtained results by comparing

the models’ performance on scene-centric vs. object-centric datasets. We observed that

the absolute scores obtained when evaluating models on object-centric datasets are

much lower than the scores obtained on scene-centric datasets.

Our findings demonstrate that the reproducibility of CMR methods on scene-centric

datasets is an open problem. Besides, we show that while the majority of CMR meth-

ods are evaluated on the MS COCO and the Flickr30k datasets, the object-centric

datasets represent a challenging and relatively unexplored set of benchmarks.

A limitation of our work is the relatively small number of scene-centric and object-

centric datasets used for the evaluation of the models. Another limitation is that we

only considered CMR in a zero-shot setting, ignoring, e.g., few-shot scenarios; this

limitation did, however, come with the important advantage of reducing the number

of experimental design decisions to be made for contrastive experiments.

A promising direction for future work is to include further datasets when contrast-

ing the performance of CMR models, both scene-centric and object-centric. In partic-

ular, it would be interesting to investigate the models’ performance on datasets, e.g.,

Conceptual Captions (Sharma et al., 2018), the Flower (Nilsback and Zisserman, 2008),

and the Cars (Krause et al., 2013) datasets. A natural step after that would be to

consider few-shot scenarios.
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Thus, our answer to RQ1 is that while relative performance results in image-text

CMR are partially reproducible and replicable across certain datasets, particularly

scene-centric ones, they face challenges on object-centric datasets. The absolute perfor-

mance scores on object-centric datasets are lower compared to scene-centric datasets,

emphasising the need for further exploration and evaluation of CMR methods on di-

verse benchmark datasets. Reproducibility on scene-centric datasets is a challenge,

with partial success attributed to differences in data preprocessing and experimental

setups. Replicability from scene-centric to object-centric datasets is limited, indicating

discrepancies in model performance due to dataset characteristics. Generalizability

across different dataset types is constrained, with lower performance on object-centric

datasets suggesting that current models lack robustness across diverse data types.

reproducibility

To ensure the reproducibility of the findings presented in this chapter, we have made

our code publicly accessible at https://github.com/mariyahendriksen/ecir23-obj

ect-centric-vs-scene-centric-CMR.



3
M U LT I M O DA L L E A R N E D S PA R S E

R E T R I E VA L

In the previous chapter, we focused on the problem of reproducibility of cross-modal

retrieval (CMR) results for object-centric and scene-centric datasets. In this chapter,

we continue our investigation of dense and sparse retrieval in the context of vision-

language (VL) alignment in the context of learned sparse retrieval (LSR) (Formal et al.,

2021; Zamani et al., 2018). LSR represents a promising research direction due to its po-

tential for efficient and effective neural retrieval, particularly in text-based tasks. How-

ever, the application of LSR in VL context remains relatively underexplored (Nguyen

et al., 2023b). Hence, in this chapter, we address this research question:

RQ2: How can learned sparse retrieval techniques be applied in the vision-language

domain?

To answer this research question, we design and implement a model for the task

and evaluate its performance. During our experiments, we discover two phenomena

arising in the domain – dimension co-activation and semantic deviation. Dimension

co-activation refers to the scenario where sparse representations of images and cap-

tions activate the same output dimensions, creating a subset of dense space within the

vocabulary. While some co-activation is necessary for effectively matching captions

with corresponding images, excessive co-activation can lead to inefficient retrieval pro-

cesses. Semantic deviation, on the other hand, highlights the disparity between the

semantic content of the visual or textual query and the sparse output terms. Upon

discovering and formalizing the phenomena of dimension co-activation and semantic

deviation, we formally define both and propose the metrics to quantify them. Further-

more, to mitigate both phenomena, we propose to train our model with probabilistic

This chapter was published at the 44
th European Conference on Information Retrieval (ECIR 2024) under

the title “Multimodal Learned Sparse Retrieval with Probabilistic Expansion Control” (Nguyen et al.,
2024).
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expansion control, gradually increasing term expansion toward the end of the training

process. This chapter contributes to our understanding of the problem of VL align-

ment in the context of LSR.

3.1 introduction
LSR (Formal et al., 2021; Formal et al., 2022; Nguyen et al., 2023b) typically employs

transformer-based encoders to encode queries and documents into sparse lexical vec-

tors (i.e., bags of weighted terms) that are compatible with a traditional inverted index.

Empirically, LSR has shown advantages over single-vector dense models on retrieval

generalization benchmarks (Formal et al., 2022; Kamalloo et al., 2023).

While LSR and dense retrieval are prevalent in text retrieval, dense retrieval has

taken the lead in multi-modal search. This is evident in state-of-the-art text-image

pretraining methods like BLIP (Li et al., 2022b) and ALBEF (Li et al., 2021a), which rely

on dense architectures. For multimodal learned sparse retrieval (MLSR), LexLIP (Zhao

et al., 2023a) and STAIR (Chen et al., 2023a) are the only recent methods that exhibit

competitive results on standard benchmarks. However, both models require complex

multi-step training on extensive text-image pairs: LexLIP with up to 14.3 million pairs

and STAIR with a massive 1 billion pairs, encompassing public and private data.

We approach the MLSR problem by using a pre-trained dense model and training a

small sparse projection head on top of dense vectors, using image-text dense scores as

a supervision signal. Naively learning the projection layer leads to issues of (i) high

dimension co-activation and (ii) semantic deviation. Issue (i) happens when text and

image sparse vectors excessively activate the same output dimensions, forming a sub-

dense space inside the vocabulary space. Issue (ii) means that produced output terms

do not reflect the content of captions/images, making them not human-interpretable.

To counter (i) and (ii), we propose a single-step training method with probabilistic term

expansion control. By disabling term expansions, we force the projection to produce

meaningful terms first, then gradually allow more term expansions to improve the

effectiveness while also randomly reminding the model not to fully rely on expansion

terms. This process is handled using Bernoulli random variables with a parameter

scheduler to model the expansion likelihood at both caption and word levels.

Opting for dense to sparse projection, instead of training an MLSR model from

scratch, provides several advantages. First, it is aligned with the broader community

effort to reduce the carbon footprint of training deep learning models (Luccioni and

Hernandez-Garcia, 2023). By keeping the dense encoders frozen and learning a light-

weight projection layer, we can avoid the double GPU training/inference cost of two

models (dense & sparse) while having more flexibility. Our approach enables the pre-

computation of dense text and image vectors, allowing easy integration or removal of
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the projection layer based on available (dense or sparse) software and infrastructure.

Moreover, this transformation may shed light on the interpretability of dense vectors,

possibly contributing to a deeper understanding of the fundamental distinctions be-

tween these two multi-modal retrieval paradigms.

To evaluate the proposed training method, we conduct extensive experiments on

two dense multi-modal models (BLIP, ALBEF) and two scene-centric (Hendriksen et

al., 2023) datasets (MSCOCO (Lin et al., 2014), Flickr30k (Young et al., 2014)). We ana-

lyze the problems of dimension co-activation and semantic deviation under different

settings.

Our contributions. The main contributions of this chapter are: (i) We propose a

line of research for efficiently converting a multi-modal dense retrieval model to a

multi-modal LSR model. (ii) We train a lightweight projection head to convert dense

to sparse vectors and show that our sparsified models are faithful to dense models

while outperforming previous multi-modal LSR models. The training is efficient and

does not require ground-truth labels. (iii) We identify the issues of high dimension

co-activation and semantic deviation and propose a training method to address them.

3.2 related work

3.2.1 Learned Sparse Retrieval

Learned sparse retrieval is a family of neural retrieval methods that encode queries

and documents into sparse lexical vectors that can be indexed and searched efficiently

with an inverted index. There are many LSR approaches in the literature on text

retrieval (Formal et al., 2021; Zamani et al., 2018; Nguyen et al., 2023c); they are

mainly built up from two types of encoder: MLP and MLM (Nguyen et al., 2023b).

The MLP encoder uses a linear feedforward layer placed on top of the transformers’s

last contextualized embeddings to predict the importance of input terms (similar to

term-frequency in traditional lexical retrieval). The MLP encoder has no term ex-

pansion capability. On the other hand, the MLM encoder utilizes the logits of the

masked language model (MLM) for weighting terms and selecting expansion terms.

Splade (Formal et al., 2022; Formal et al., 2021) is a recent state-of-the-art text-oriented

LSR approach that employs the MLM encoder in both query and document side, while

other methods (MacAvaney et al., 2020; Lin and Ma, 2021; Dai and Callan, 2019) use

MLP encoders on both sides or only on the query side. Although it seems to be more

beneficial to have expansion on both queries and documents, a recent study (Nguyen

et al., 2023b) found that query and document expansion have a cancellation effect

on text retrieval (i.e., having expansion on the document side reduces the usefulness
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of query expansion) and one could obtain near state-of-the-art results without query

expansion.

Unlike prior work focused on converting sparse to dense representations for hybrid

ad-hoc text retrieval (Lin and Lin, 2021; Lin and Lin, 2023), our work explores the

reverse task of dense to sparse conversion in the multi-modal domain. This direc-

tion presents new challenges due to dimension co-activation and semantic deviation

issues. Ram et al. (Ram et al., 2023) interpreted text dense retrieval by zero-shot

projection from dense to vocabulary space using a frozen MLM head. Nguyen et al.

(2023a) propose a simple sparse VL bi-encoder without query expansion and evalu-

ate the performance on the image suggestion task. We aim for an efficient, effective,

and semantically faithful drop-in sparse replacement of multi-modal dense retrieval,

necessitating training of the projection layer.

3.2.2 Cross-Modal Retrieval

CMR methods construct a multimodal representation space, where the similarity of

concepts from different modalities can be measured using a distance metric such as a

cosine or Euclidean distance. Some of the earliest approaches in CMR utilized canon-

ical correlation analysis (Gong et al., 2014; Klein et al., 2014). They were followed by

a dual encoder architecture equipped with a recurrent and a convolutional compo-

nent, the most prominent approaches in that area featured a hinge loss (Frome et al.,

2013; Wang et al., 2016b). Later approaches further improved the effectiveness using

hard-negative mining (Faghri et al., 2018).

Later, the integration of attention mechanisms improved performance. This fam-

ily of attention mechanisms includes dual attention (Nam et al., 2017), stacked cross-

attention (Lee et al., 2018), bidirectional focal attention (Liu et al., 2019). Another line of

work proposes to use transformer encoders (Vaswani et al., 2017) for this task (Messina

et al., 2021), and adapts the BERT model (Devlin et al., 2019) as a backbone (Gao et al.,

2020; Zhuge et al., 2021).

A related line of work focuses on improving the performance on CMR via modality-

specific graphs (Wang et al., 2021b), or image and text generation modules (Gu et al.,

2018). There is also more domain-specific work that focuses on CMR in fashion (Goei

et al., 2021; Laenen, 2022), e-commerce (Hendriksen et al., 2022; Hendriksen, 2022),

cultural heritage (Sheng et al., 2021b), and cooking (Wang et al., 2021b).
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3.3 background

Task definition. We use the same notation as in previous work (Zhang et al., 2022c;

Brown et al., 2020). We work with a cross-modal dataset D that includes N image-

caption tuples: D =
{(

xi
I , {xi

Cj
}k

i=1

)}N

i=1
. Each tuple comprises an image xI and k

associated captions {xCj
}k

j=1.

The cross-modal retrieval (CMR) task is defined analogously to the standard informa-

tion retrieval task: given a query and a set of candidates, we rank all candidates w.r.t.

their relevance to the query. The query can be either a caption or an image. Similarly,

the set of candidate items can contain either images or captions. CMR is performed

across modalities, therefore, if the query is a caption then the set of candidates are

images, and vice versa. Hence, the task comprises two subtasks: (i) caption-to-image
retrieval: retrieving images relevant to a caption query, and (ii) image-to-caption retrieval:
retrieving relevant captions that describe an image query. We focus on caption-to-image
retrieval only as it is more challenging, as reported by previous research (Li et al., 2022b;

Li et al., 2021a; Zhao et al., 2023a).

Sparsification-induced phenomena. In this chapter, we investigate two phenomena

arising during the sparsification process: dimension co-activation and semantic devia-

tion.

Definition 1 (Dimension co-activation). We define dimension co-activation as sparse im-

age and caption representations activating the same output dimensions, creating a

sub-dense space within the vocabulary. While co-activation is essential for match-

ing captions with images and can be measured by FLOPs, high co-activation results in

unnecessarily long posting lists, harming the efficiency of LSR. Establishing a clear

threshold for high co-activation is challenging, but we observe that beyond a certain

point, increased FLOPs yield minimal improvements in effectiveness. To quantify this

effect, we use effectiveness metrics (e.g., R@k) in combination with the FLOPs metric:

FLOPs = 1
|C||I| ∑xC∈C ∑xI∈I s0

C · s0
I , (3.1)

where C and I are caption and image collections, sC , sI are sparse vectors of a caption

xC and an image xI .

Definition 2 (Semantic deviation). We define semantic deviation as the disparity be-

tween the semantic information in the visual or textual query and that in the sparse

output terms. High co-activation suggests (but does not guarantee) semantic devia-

tion.

Measuring semantic deviation directly is challenging, so we use two rough proxies,

Exact@k and Semantic@k, defined as follows:

Exact@k =
1
k
|{t | t ∈ xC , t ∈ topk(sC)}| (3.2)
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… … …… …

 Caption Encoder     Image Encoder

dense dense
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Figure 3.1: The architecture of Dense2Sparse (D2S). The caption and image encoders are frozen,
and the sparse projection is trained to project dense vectors to sparse vectors.

Semantic@k =
1
k ∑

xi
t∈topk(sC )

max
xj

t∈xC

fenc(xi
t) · fenc(x

j
t)

∥ fenc(xi
t)∥∥ fenc(x

j
t)∥

. (3.3)

Exact@k measures the ratio of overlapping terms between the input caption and the

top-k highest weighted output terms, providing a partial picture of semantic devia-

tion without considering synonyms. Semantic@k complements Exact@k by calculating

the averaged cosine similarity between static embeddings obtained using model fenc(·)
of top-k output terms and input caption terms. Higher values for both metrics sug-

gest less semantic deviation, implying better alignment of output terms with input

captions.

3.4 methodology

3.4.1 Model Architecture

The architecture of our Dense2Sparse model is visualized in Figure 3.1.

Dense2Sparse takes an image and a caption as input, projecting them into a |V|-
dimensional space, where each dimension represents the weight of a corresponding

vocabulary entry. The key components include two dense encoders, an image encoder

f Iθ (·) and a caption encoder f Cϕ (·), as well as a multimodal sparse projection head

gψ(·).
Dense image and text encoders. The dense image encoder f Iθ : X → Z takes an input

image xI and maps it into a latent space Z = Rd: zI = f Iθ (xI ), where zI ∈ Rd.

Similarly, the dense text encoder f Cϕ : X → Z takes an input text (caption) xC , and

maps it into a latent space Z = Rd: zC = f Cϕ (xC), where zC ∈ Rd. We obtain dense

representations using BLIP and ALBEF as a backbone. Both encoders are frozen.

Multimodal sparse projection head. The multimodal sparse projection head gψ : Z → S
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maps dense latent image and text representations into the sparse image and text vector

space S = R|V|>0 :

sC = gψ(zC) and sI = gψ(zI ). (3.4)

The multimodal sparse projection head comprises four steps. First, we project the

d-dimensional dense vector z to an ω-dimensional dense vector: z1 = W1z, where

W1 ∈ Rω×d, z ∈ Rd, and z1 ∈ Rω. Second, we apply layer normalization:

z2 =
z1 −E[z1]√
Var[z1] + ϵ

· γ + β, (3.5)

where E[z1] and Var[z1] are the expectation and variance of z1, γ and β are learnable

affine transformation parameters, and z2 ∈ Rω. Third, we project z2 to the vocabulary

space S = R|V|>0 : s = W2z2, where W2 ∈ R|V|×ω, z2 ∈ Rω, and s ∈ R|V|. W2 is

initialized with vocabulary embeddings similar to the transformer-masked language

model. Fourth, we remove negative weights and apply a logarithmic transformation

to the positive weights: s = loge(1 + max(0, s)), where s ∈ R|V|>0 . The resulting |V|-
dimensional sparse vector is aligned with the vocabulary, and each dimension repre-

sents the weight of the corresponding vocabulary entry. This projection head is similar

to the MLM head employed in previous work (Formal et al., 2022; MacAvaney et al.,

2020).

Probabilistic expansion control. Without any intervention, training the projection

module with a standard contrastive loss could lead to high-dimension co-activation

and semantic deviation as defined previously. This phenomenon affects the efficiency

of an inverted index and the interpretability of the outputs. To mitigate this prob-

lem, we propose a single-step training algorithm with probabilistic lexical expansion

control. It is described in Algorithm 1.

We define a Bernoulli random variable E ∼ Ber(p), p ∈ [0, 1] and use it to control

textual query expansion. We consider a caption-level and a word-level expansion. The

caption-level expansion is controlled by the random variable EC ∼ Ber(pC). If EC = 1

the expansion is allowed, while EC = 0 means the expansion is not allowed. Analo-

gously, the word-level expansion, or the expansion to the i-th word in the vocabulary, is

regulated by the random variable E v
i ∼ Ber(pv

i ).

The parameters pC and pv
i define the likelihood of caption-level and word-level ex-

pansion within a given training epoch. During training, we initially set the caption-

level expansion probability, pC , to zero. This initial value prevents the expansion of

textual queries, forcing the model to project images onto relevant tokens belonging

to the captions they were paired with. This approach facilitates the meaningful pro-

jection of dense vectors onto relevant words in the vocabulary. However, it adversely

impacts retrieval effectiveness, as the model cannot expand queries. As a consequence,



36 multimodal learned sparse retrieval

Algorithm 1 Multimodal LSR training with probabilistic expansion control

Input: image-caption pair (xI , xC),

caption encoder f Cϕ , image encoder f Iθ ,

sparse projection head gψ, loss function

L, and expansion rate function fincr.

pv
i ← 1− d f v

i

pc ← 0

for epoch do

for batch do

zC ← f Cϕ (xC), zI ← f Iθ (xI )
sC ← gψ(zC), sI ← gψ(zI )

EC ∼ Ber(pc), E v
i ∼ Ber(pv

i )

sC ← EXPAND(xC , sC , EC , E v
i )

L ← L(sC , sI , zI , zC)

end for

pc ← fincr(pc), pv
i ← fincr(pv

i )

end for

function EXPAND(xC , sC , EC , E v
i )

for 0 ≤ i < batch_size do

for 0 ≤ k < |V| do

if vk /∈ xC then

sC i,k ← sC i,k · EC · ev
k

else

sC i,k ← sC i,k · E v
k

end if

end for

end for

return sC
end function

the model’s ability to handle semantic matching is limited. To gradually relax this con-

straint, we use a scheduler that incrementally increases the value of p after each epoch

until it reaches a maximum value of one in the final epoch. In each epoch, we sample

the values of E per batch and enforce expansion terms to be zero when EC equals zero.

Similarly, for word-level expansion, we initialize the expansion probability of the i-th
word pv

i to 1− d f v
i where d f v

i is the normalized document frequency of vocabulary

element vi in the caption collection C. This setting discourages the expansion of more

frequent terms because they are less meaningful and can hinder the efficiency of query

processing algorithms. We relax each pv
i after every epoch, ensuring that it reaches a

maximum value of one at the conclusion of the training process. The expansion rate

increase after each epoch is defined as follows:

fincr(p) =

p + 1
# epochs , for caption-level expansion

p +
d f v

i
# epochs , for word-level expansion.

(3.6)
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3.4.2 Training Loss

We train our Dense2Sparse using a loss that represents a weighted sum of a bidirec-

tional loss and a sparse regularization parameter. The bidirectional loss is based on

the following one-directional loss:

ℓ(A→B) = −
(

exp(z⊺AzB/τ)

∑I∗ exp(z⊺AzI∗/τ)

)
log2

(
SoftMax[s

⊺

AsB ]
)

,

where sA ∈ R|V|>0 and sB ∈ R|V|>0 are sparse vectors, zA ∈ Rd and zB ∈ Rd are dense

vectors, and τ ∈ R>0 is a temperature parameter.

The resulting loss is formalized to capture both bidirectional losses and sparse reg-

ularization. The overall loss L is defined as:

L = (1− λ) [ℓ(I→C) + ℓ(C→I)]︸ ︷︷ ︸
bidirectional loss

+λ η[L1(sI ) + L1(sC)]︸ ︷︷ ︸
sparse regularization parameter

, (3.7)

where ℓ(I→C) is an image-to-caption loss, ℓ(C→I) is a caption-to-image loss; λ = [0, 1]

is a scalar weight, η = [0, 1] is a sparsity regularization parameter, and L1(x) = ∥x∥1 is

L1 regularization. It is worth noting that the loss utilizes dense scores for supervision,

a strategy found to be more effective than using ground truth labels.

3.5 experiments and results

3.5.1 Experimental Setup

Datasets. We trained and evaluated our models on two widely used datasets for text-

image retrieval: MSCOCO (Lin et al., 2014) and Flickr30k (Plummer et al., 2015). Each

image in the two datasets is paired with five short captions (with some exceptions). We

re-used the splits from (Karpathy and Li, 2015) for training, evaluating, and testing.

The splits on MSCOCO have 113.2k pairs for training, and 5k pairs for each valida-

tion/test set. Flickr30 is smaller with 29.8k/1k/1k for train, validation, test splits

respectively. The best model is selected based on the validation set and evaluated on

the test set.

Evaluation metrics. To evaluate model performance and effectiveness, we report R@k

where k = {1, 5}, and MRR@10 using the ir_measures (MacAvaney et al., 2022) library.

Implementation and training details. The caption and image dense vectors of BLIP

(Li et al., 2022b) and ALBEF (Li et al., 2021a) models are pre-computed with check-

points from the larvis library (Li et al., 2022a). We train our models to convert from

dense vectors to sparse vectors on a single A100 GPU with a batch size of 512 for 200

epochs. The training takes around 2 hours and only uses up to around 10 GB of GPU
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Table 3.1: The effectiveness of sparsified models (D2S) and baselines. († p < 0.05 with paired
two-tailed t-test comparing D2S to the dense model with Bonferroni correction)

Model
MSCOCO (5k) Flickr30k (1k)

R@1↑ R@5↑ MRR@10↑ FLOPs↓ R@1↑ R@5↑ MRR@10↑ FLOPs↓

T2I Dense Retrieval

COOKIE (Wen et al., 2021) 46.6 75.2 - - 68.3 91.1 - -

COTS (5.3M) (Lu et al., 2022) 50.5 77.6 - - 75.2 93.6 - -

ALBEF (Li et al., 2021a) 53.1 79.3 64.3 - 79.1 94.9 86.6 -

BLIP (Li et al., 2022b) 57.3 81.8 67.8 - 83.2 96.7 89.3 -

T2I Sparse Retrieval

VisualSparta 45.1 73.0 - - 57.1 82.6 - -

STAIR (zero-shot) 41.1 56.4 - - 66.6 88.7 - -

LexLIP (4.3M) 51.9 78.3 - - 76.7 93.7 - -

LexLIP (14.3M) 53.2 79.1 - - 78.4 94.6 - -

D2S (ALBEF, η = 1e− 3) 49.6†
77.7†

61.4†
18.7 74.2†

93.8†
82.6†

21.7

D2S (ALBEF, η = 1e− 5) 50.7†
78.2†

62.4†
74.2 75.4†

94.3†
83.6†

64.3

D2S (BLIP, η = 1e− 3) 51.8†
79.3†

63.4† 11.5 77.1†
94.6†

84.6† 9.9

D2S (BLIP, η = 1e− 5) 54.5† 80.6† 65.6†
78.4 79.8† 95.9† 86.7†

39.5

memory. We set the temperature τ to 0.001 and experiment with sparse regularization

weights η ∈ [1e− 5, 1e− 2].

3.5.2 Results and Discussion

RQ2.1: How effective is the proposed method for converting dense representations to sparse?
We trained various Dense2Sparse models (D2S) using our proposed training method

with different sparse regularization weights ranging from 1e − 5 to 1e − 2. Figure

3.2a illustrates the effectiveness and efficiency of these variations, with detailed results

presented in Table 3.1. Firstly, we observe that increasing the sparse regularization

weight enhances model efficiency (reduced FLOPs) but reduces its effectiveness (lower

Recall and MRR). On the MSCOCO dataset, our most efficient sparse BLIP model

(η = 1e− 2) achieves a R@1 of 47.2 and MRR@10 of 58.5 with the lowest FLOPs value

of 1.6. Relaxing the regularization weight to 1e− 3 results in an approximately 10%

increase in R@1 to 51.8 and a similar rise in MRR@10 to 63.4, albeit at the expense of

around 7 times higher FLOPs (less efficient).

Further relaxing the sparse regularization gradually brings the sparsified model’s

effectiveness closer to the original dense model, while reducing the efficiency. The

most effective sparsified BLIP model with η = 1e− 5 performs competitively with the

original dense version (54.5 vs. 57.3) and outperforms other dense baselines.

Additionally, we observe a diminishing gap between dense and sparsified models
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Figure 3.2: Sparisified models compared to original dense models.

as we assess recalls at higher cutoff positions, such as R@5 and R@10. Similar trends

are observed across different datasets, including Flickr30k and MSCOCO, as well as

among different dense models, including BLIP and ALBEF. This indicates the broad

applicability of our proposed approach to diverse datasets and models.

RQ2.2: How does the proposed sparsified model compare to state-of-the-art multi-modal
LSR models? To answer this research question, we compare our sparsified models with

existing LSR baselines, namely Visual Sparta, STAIR, and LexLIP. Currently, neither

the code nor the checkpoints for these baselines are publicly available. Therefore, we

rely on the numbers reported in their respective papers for comparison, excluding the

FLOPs.

STAIR and LexLIP are two of the most recent multimodal LSR approaches, both

trained on large datasets, with STAIR utilizing 1 billion internal text-image pairs. In

contrast, our proposed method leverages pretrained dense retrieval models to effi-

ciently learn a lightweight sparse projection for converting dense vectors to sparse

vectors.

The effectiveness of our methods and the baselines on MS-COCO and Flickr30k is

presented in Table 3.1. Notably, our efficient model, D2S(BLIP, η = 1e− 3), performs

competitively with LexLIP trained on 4.3 million text-image pairs at R@1. Its R@5 is

slightly better than LexLIP (4.3M) and comparable to the LexLIP model trained on

14.3 million pairs. With a lower sparse regularization, our D2S(BLIP, η=1e−5) model

significantly outperforms all baselines on both MSCOCO and Flickr30k. On MSCOCO,

its R@1 is 21%, 5%, and 2.8% higher than the R@1 of Visual Sparta, LexLIP (4.3M), and

LexLIP (14.3M), respectively. All our models outperform Visual Sparta and STAIR,

although this comparison with STAIR uses a zero-shot setting, because we lack access

to their code and checkpoints for fine-tuning STAIR further with in-domain data.

We kept the dense encoders frozen, so the effectiveness of our sparsified models

is inherently bounded by the dense results. Our sparsified ALBEF models, for exam-



40 multimodal learned sparse retrieval

Table 3.2: The dimension co-activation effect of Dense2Sparse (D2S) variations.

Model (D2S variations)
MSCOCO (5k) Flickr30k (1k)

R@1↑ R@5↑ MRR@10↑ FLOPs↓ R@1↑ R@5↑ MRR@10↑ FLOPs↓

(BLIP, η = 1e− 3, exp = 0) 45.5 73.0 57.3 2.8 68.9 89.5 77.8 3.0

(BLIP, η = 1e− 3, exp = 1) 53.4 80.0 64.6 49.1 79.5 95.5 86.4 50.3

(BLIP, η = 1e− 3, exp = c) 51.9 79.0 63.4 11.8 77.3 94.7 84.8 13.6

(BLIP, η = 1e− 3, exp = c + w) 51.8 79.3 63.4 11.5 77.1 94.6 84.6 9.9

(BLIP, η = 1e− 5, exp = 0) 47.2 74.4 58.8 3.2 72.3 91.8 80.7 3.5

(BLIP, η = 1e− 5, exp = 1) 55.9 81.3 66.8 343 81.4 96.0 87.7 213

(BLIP, η = 1e− 5, exp = c) 54.7 80.5 65.8 79.1 79.9 95.5 86.7 40.1

(BLIP, η = 1e− 5, exp = c + w) 54.5 80.6 65.6 78.4 79.8 95.9 86.7 39.5

(ALBEF, η = 1e− 3, exp = 0) 43.8 71.8 55.7 2.5 65.8 88.3 75.4 3.0

(ALBEF, η = 1e− 3, exp = 1) 50.9 78.4 62.5 68.2 75.7 94.2 83.8 61.9

(ALBEF, η = 1e− 3, exp = c) 49.7 77.7 61.5 38.3 74.6 93.7 82.8 17.9

(ALBEF, η = 1e− 3, exp = c + w) 49.6 77.7 61.4 18.7 74.2 93.8 82.6 21.7

(ALBEF, η = 1e− 5, exp = 0) 45.9 73.9 83.0 3.4 68.1 90.0 77.6 3.2

(ALBEF, η = 1e− 5, exp = 1) 52.4 78.7 63.7 283 77.2 94.6 84.8 210

(ALBEF, η = 1e− 5, exp = c) 51.2 78.3 62.8 77.9 76.4 94.8 84.0 71.7

(ALBEF, η = 1e− 5, exp = c + w) 50.7 78.2 62.4 74.2 75.4 94.3 83.6 64.3

ple, exhibit slightly lower overall effectiveness since their corresponding dense perfor-

mance is lower than that of BLIP’s dense scores. Nonetheless, our sparsified ALBEF

models are also comparable with LexLIP variants.

RQ2.3: How does the proposed training method impact dimension co-activation and seman-
tic deviation? As discussed in Section 3.3, high co-activation increases posting list

length, impacting inverted index efficiency. We examine this impact by analyzing

FLOPs alongside model effectiveness metrics. Table 3.1 presents results for models

trained with our method and three baseline variants, with fixed expansion rates of 0

and 1 in the first two baselines. The third baseline (exp = c) explores the influence of

word-level expansion control, excluding it from our training method.

At an expansion rate of zero, models project the caption’s dense vector only onto

terms from the caption, with all other projections forced to zero. The image pro-

jector must then learn to align the image vector with terms in the paired captions.

Conversely, setting exp to 1 gives the model the freedom to project onto any output

vectors, making it more inclined toward dimension co-activation.

In Table 3.2, rows with (exp = 0) show models with no expansion, resulting in

remarkably low FLOPs, with each query averaging 2 to 3 overlapping terms with each

document. However, disabling expansion reduces the model’s ability for semantic

matching, leading to modest effectiveness (45–47 R@1 on MSCOCO and 68–72 R@1

on Flickr30k with varying sparsity). Enabling non-regulated expansion (exp = 1)
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Table 3.3: Semantic deviation on different Dense2Sparse (D2S) variations. († p < 0.01 with
paired two-tailed t-test comparing exp=c to exp=1)

Model (D2S variations)
MSCOCO (5k) Flickr30k (1k)

Exact@20 Semantic@20 Exact@20 Semantic@20

(BLIP, η = 1e− 5, exp = c) 20.0†
60.1†

18.3†
58.0†

(BLIP, η = 1e− 5, exp = 1) 6.9 48.5 3.2 40.7

(BLIP, η = 1e− 3, exp = c) 25.0†
63.2†

23.1†
60.6†

(BLIP, η = 1e− 3, exp = 1) 2.5 42.0 2.2 41.1

(ALBEF, η = 1e− 5, exp = c) 20.5†
61.0†

19.2†
59.8†

(ALBEF, η = 1e− 5, exp = 1) 5.6 43.5 1.2 40.5

(ALBEF, η = 1e− 3, exp = c) 15.1†
51.3†

19.6†
56.4†

(ALBEF, η = 1e− 3, exp = 1) 1.6 40.6 1.3 41.5

significantly improves model effectiveness (50–55 R@1 on MSCOCO and 75–79 R@1

on Flickr30k with various regularization weights). However, this improvement comes

at the cost of substantially increased FLOP scores, sometimes by up to 100 times,

making sparsified vectors very computationally expensive. Ultimately, the resulting

models behave like dense models, which is an undesired effect.

Our training method, which incorporates expansion control at the caption and word

levels, is designed to gradually transition from one extreme (exp = 0) to the other

(exp = 1). During training, we allow a likelihood of expansion, which increases pro-

gressively to over time. However, we also introduce random elements, represented by

a random variable, to remind the model to remain faithful to the original captions/im-

ages.

The results, displayed in rows labeled with exp = c + w, demonstrate that our ap-

proach strikes a better balance between efficiency and effectiveness. It achieves compet-

itive levels of effectiveness compared to models with exp = 1 while requiring only half

or a third of the computational operations (FLOPs). For example, on MSCOCO with

the BLIP model, Dense2Sparse (η = 1e− 3) achieves a performance of 51.8 R@1 (com-

pared to 53.4 when exp = 1) with just 11.8 FLOPs, making it four times more efficient

than the exp = 1 baseline. With the same setting, our method achieves 14% higher R@1

and 11% higher MRR@10 than the baseline with no expansion (exp = 0). Compared

to the baseline without word-level expansion control, no significant differences are ob-

served in terms of efficiency and effectiveness. Thus, caption-level expansion control

alone seems sufficient for achieving reasonable efficiency and effectiveness. Similar

results are noted across various settings, datasets, and dense models.

Sparse representations contain interpretable output dimensions aligned with a vo-
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Table 3.4: Examples of semantic deviation. We show the top-10 terms per model.

Caption, Image D2S (η = 1e− 3, exp = c)
D2S (η = 1e − 3, exp =

1.0)

A man with a red helmet

on a small moped on a dirt

road

dirt, mo, motor, motorcycle,

bike, red, riding, features, sol-

dier, ##oot

, accent " yourself natural

may while officer english

ac

mountain mountains bike bee

dirt mo red path ##oot person

man riding bicycle

accent ship natural de

crown yourself " ra now

wild

A women smiling really big

while holding a Wii remote.

lady woman smile women

remote laughing wii smiling

video controller

, kai called forces rush lee

war oil like ##h

smile after green woman smil-

ing sweater remote lady wii her

tall kai forces oil rush met

war college thus there

A couple of dogs sitting in

the front seats of a car.

dogs dog car backseat seat cou-

ple vehicle sitting two puppy

, electric stood forest na-

tional master help arts fc

-

dog car dogs puppy out vehicle

pup inside early open

stood forest national elec-

tric master twice grant

men para yet

cabulary. However, training a D2S model without our expansion regulation leads to

semantic deviation, turning vocabulary terms into non-interpretable latent dimensions.

We assess this effect using Exact@k and Semantic@k metrics (defined in Section 4.2),

reporting results in Table 3.3 and providing qualitative examples in Table 3.4.

Uncontrolled models (with exp = 1) exhibit lower Exact@20 and Semantic@20 than

our expansion-controlled models (exp = c). In the top 20 terms of uncontrolled models,

only one or none are in the original captions, while controlled models generate 3 to

5 caption terms. The low Semantic@20 of the uncontrolled models also suggests low

relatedness of output terms to the caption terms. This implication could be further

supported by the examples demonstrated in Table 3.4. Uncontrolled models generate

random terms, while our method produces terms that more faithfully reflect captions

and images. Most top-10 terms from our method are relevant to the input, including

a mix of original terms and synonyms (e.g., “dog” vs. “puppy”, “car” vs. “vehicle”).

RQ2.4: Is the sparsified model faithful to the dense model? This research question aims to

analyze the faithfulness of sparsified models to their original dense models. We report

in Table 3.5 the Pearson correlation calculated for various effectiveness metrics of dense
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Table 3.5: Correlation between dense and different variations of Dense2Sparse (D2S).

Model (D2S variations)
MSCOCO (5k) Flickr30k (1k)

ρ-R@1↑ ρ-R@5↑ ρ-MRR@10↑ ρ-R@1↑ ρ-R@5↑ ρ-MRR@10↑

(BLIP, η = 1e− 2) 61.0 65.7 72.3 54.7 55.0 63.9

(BLIP, η = 1e− 3) 74.0 76.9 83.8 66.2 65.5 73.6

(BLIP, η = 1e− 4) 79.7 82.1 88.2 71.6 72.8 79.3

(BLIP, η = 1e− 5) 81.2 83.8 89.2 74.3 74.0 81.1

(ALBEF, η = 1e− 2) 64.4 68.7 75.5 57.7 57.0 67.5

(ALBEF, η = 1e− 3) 73.1 76.7 83.5 68.8 69.0 77.2

(ALBEF, η = 1e− 4) 78.1 80.7 87.2 73.2 74.6 81.3

(ALBEF, η = 1e− 5) 78.2 81.3 87.3 74.2 72.5 82.0

and sparsified queries. The results show that the correlation between sparsified and

dense models is consistently positive and tends to increase as we relax the sparse

regularization. Furthermore, as we consider higher cutoff values (R@1, R@5, MRR@10),

the correlation tends to increase as the performance gap between the two systems

narrows. Manually comparing the top-10 ranked images of the most differing queries,

we find that while the two models rank top-10 images differently, there are a lot of

common images (including the golden image) that look equally relevant to the query.

Figure 3.2b shows that a high ratio (average: 70%) of the top-10 images appear in

both dense and sparse ranking lists. This analysis shows that the sparsified model is

reasonably faithful to the dense model, suggesting that the sparse output terms could

potentially be used for studying the semantics of dense vectors.

3.5.3 Retrieval Latency of Dense and Sparsified Models

We discussed the average FLOPs of sparsified models for retrieval efficiency. We now

present query throughput and retrieval latency results in Table 3.6. Using Faiss (John-

son et al., 2019) and PISA (Mallia et al., 2019; MacAvaney and Macdonald, 2022) on

a single-threaded AMD Genoa 9654 CPU, the dense BLIP model with Faiss HNSW

is exceptionally fast, outperforming D2S models with PISA. D2S models with query

expansion (exp=c) are slower due to high FLOPs and possibly LSR known limita-

tions (Mackenzie et al., 2021). Removing expansion terms (exp=0) improves latency

(FLOPs similar to DistilSPLADE (Formal et al., 2021; Formal et al., 2022)) but is still

approximately 30× slower than dense retrieval. To balance efficiency and effectiveness

of D2S, we propose using the inverted index with original query terms for retrieval,

followed by re-scoring with expansion terms. With our simple iterative implementa-

tion, this approach proves effective, especially for retrieving fewer images per query.

Surprisingly, indexing D2S models with Faiss HNSW competes well with PISA, par-
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Table 3.6: Retrieval latency (CPU - 1 thread) of D2S models on 123k MSCOCO images.

Model Throughput (q/s) Latency (ms)

FLOPS @10 @100 @1000 @10 @100 @1000

Dense (BLIP, HNSW, Faiss) - 13277 9739 7447 0.08 0.10 0.14

D2S (BLIP, η = 1e− 3, exp=c, PISA) 11.5 6 5 5 156.60 183.42 193.46

D2S (BLIP, η = 1e− 3, exp=0, PISA) 2.8 449 284 160 2.23 3.52 6.25

No Expansion >> Expansion - 369 120 18 2.70 8.31 54.05

D2S (BLIP, η = 1e− 5, exp=c, PISA) 78.4 <1 <1 <1 >300 >600 >700

D2S (BLIP, η = 1e− 5, exp=0, PISA) 3.2 230 146 90 4.34 6.85 11.04

No Expansion >> Expansion - 189 70 11 5.30 14.37 86.66

D2S (BLIP, HNSW, Faiss) - 262 262 256 3.82 3.82 3.90

ticularly at higher cut-off values (100, 1000).

3.6 conclusion

We have focused on the problem of efficiently transforming a pretrained dense re-

trieval model into a sparse model. We show that training a projection layer on top of

dense vectors with the standard contrastive learning technique leads to the problems

of dimension co-activation and semantic deviation. To mitigate these issues, we pro-

pose a training algorithm that uses a Bernoulli random variable to control the term

expansion. Our experiments show that our Dense2Sparse sparsified model trained

with the proposed algorithm suffers less from those issues. In addition, our sparsified

models perform competitively to the state-of-the-art multi-modal LSR, while being

faithful to the original dense models.

Consequently, we conclude for RQ2 that in the vision-language domain, learned

sparse retrieval techniques can be applied by converting dense representations into

sparse ones, showing promising results in both effectiveness and efficiency.

reproducibility

To ensure the reproducibility of the findings presented in this chapter, we have made

our code publicly accessible at https://github.com/thongnt99/lsr-multimodal.
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S H O R TC U T S I N V I S I O N - L A N G U A G E

R E P R E S E N TAT I O N L E A R N I N G

We continue our investigation by focusing on the problem of shortcut learning in

the context of contrastive vision-language (VL) representation learning with multiple

captions per image. We assume that all captions associated with the image contain

both shared and caption-specific information.

Specifically, we want to investigate if in such cases model learns all the information

available in the captions or if it learns a shortcut, i.e., a subset of information that

minimizes the loss but is not necessarily useful for the task at hand.

Hence, we ask the following research question:

RQ3: In the context of vision-language representation learning with multiple captions

per image, to what extent does the presence of a shortcut hinder learning task-optimal

representations?

To address this question, we propose and develop the framework for synthetic short-

cuts for vision-language (SVL). This framework allows us to augment image-caption

tuples with additional identifiers that do not bear any semantic meaning and therefore

study the problem of shortcut learning in a controlled way.

We experiment with the two following distinct models: CLIP, a large-scale model

that we fine-tune, and VSE++, a smaller model trained from scratch. We show that

contrastive VL methods tend to depend on shortcuts and suppress task-relevant infor-

mation.

This chapter was published in the Transactions on Machine Learning Research (TMLR 2024) under the
title “Demonstrating and Reducing Shortcuts in Vision-Language Representation Learning” (Bleeker et
al., 2024).

45
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4.1 introduction

Recent work on understanding the internal mechanisms of representation learning has

brought to attention the problem of shortcut learning (Robinson et al., 2021; Chen et

al., 2021; Scimeca et al., 2022). While there are multiple definitions of shortcut learning

(e.g., Geirhos et al., 2020; Wiles et al., 2022), in this chapter we define shortcuts as easy-
to-learn discriminatory features that minimize the (contrastive) optimization objective but are
not necessarily sufficient for solving the evaluation task. More specifically, we focus on the

problem of shortcut learning in the relatively unexplored context of VL representation

learning with multiple matching captions per image.

Contrastive learning (CL) plays a crucial role in VL representation learning. Despite

the success of non-contrastive approaches, e.g., (Bardes et al., 2022), the dominant

paradigm in VL representation learning revolves around either fully contrastive strate-

gies (Faghri et al., 2018; Li et al., 2019a; Jia et al., 2021; Radford et al., 2021) or a com-

bination of contrastive methods with additional objectives (Li et al., 2021a; Zeng et al.,

2022; Li et al., 2022b; Li et al., 2023a). It is standard practice in contrastive VL represen-

tation learning to sample batches of image-caption pairs and maximize the alignment

between the representations of the matching images and captions (Radford et al., 2019;

Jia et al., 2021). Given that the typical VL benchmarks, e.g., Flickr30k (Young et al.,

2014) and MS-COCO Captions (Lin et al., 2014; Chen et al., 2015), are constructed in

such a way that each image is associated with multiple captions, each caption can be

seen as a different view of the image it describes. Therefore, CL with multiple cap-

tions per image can be seen as CL with multiple views, where each caption provides

a different view of the scene depicted in the image.

CL with multiple views, where each view represents a different observation of the

same datapoint, has proven to be effective for general-purpose representation learn-

ing (Hjelm et al., 2019; Chen et al., 2020a; Tian et al., 2020a). The goal of multi-view

(contrastive) representation learning methods is to learn representations that remain

invariant to a shift of view, which is achieved by maximizing alignment between em-

beddings of similar views. A core assumption within the multi-view representation

learning literature is that task-relevant information is shared across views whereas

task-irrelevant information is not shared, given a downstream evaluation task (Zhao

et al., 2017; Federici et al., 2020; Tian et al., 2020a; Shwartz-Ziv and LeCun, 2023).

An open challenge in the multi-view representation learning domain concerns learn-
ing representations that contain task-relevant information that is not shared among different
views, i.e., that may be unique for some views (Shwartz-Ziv and LeCun, 2023; Zong et al.,

2023). In the case of image-caption datasets where each image is paired with at least

one corresponding caption, the captions matching the same image do not necessar-

ily share the same information as each caption is distinct and may describe different
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aspects of the image (Biten et al., 2022).

: a couple of boats and a red car

: a couple of boats and car on a street

<latexit sha1_base64="xln17fZi6/tqBxHk0twA8FS04OU="></latexit>xCA
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Figure 4.1: Shared vs. caption-specific
information given an example of one
image and two associated captions
xCA

and xCB
. The purple color indi-

cates information shared between the
image and both captions. The green
color indicates task-relevant informa-
tion specific for xCA

. The blue color in-
dicates task-relevant information spe-
cific for xCB

.

Figure 4.1 illustrates the concept of shared vs.

caption-specific task-relevant information. The

image is accompanied by two captions: ‘a cou-

ple of boats and a red car’ (xCA
) and ‘a couple

of boats and a car on a street’ (xCB
). The shared

information between the captions includes ‘cou-

ple of boats’ and ‘car’. Caption xCA
provides

unique information by describing the car as ‘red’.

Caption xCB
adds unique contextual details about

the location with the phrase ‘on a street’. To

learn task-optimal representations, it is essential

to integrate both the shared and unique infor-

mation from these captions. Furthermore, given

the typical quality of captions of image-caption

datasets (Chen et al., 2015), we assume that all

information present in the captions is relevant.

Hence, each image-caption pair may contain both

shared task-relevant information, i.e., information

shared across all the captions in the tuple, and

unique task-relevant information, i.e., information

not shared with other captions. Therefore, learn-

ing task-optimal representations for the image implies learning all task-relevant infor-

mation that comprises both shared and caption-specific information.

Another problem of CL approaches is related to feature suppression. (Shwartz-Ziv and

LeCun, 2023) argue that although contrastive loss functions lack explicit information-

theoretical constraints aimed at suppressing non-shared information among views,

the learning algorithm benefits from simplifying representations by suppressing fea-

tures from the input data that are not relevant for minimizing the contrastive loss.

Furthermore, Robinson et al. (2021) demonstrate that contrastive loss functions are

susceptible to solutions that suppress features from the input data. In the case of

VL, CL with multiple captions per image where at least one caption contains caption-

specific information, the image representation can never have a perfect alignment with

all matching captions. This is due to the misalignment that happens when encoding

unique information for the other captions. Therefore, it is unclear whether contrastive

methods can learn task-optimal representations, i.e., representations that contain all

information present in the captions associated with the image, or if they learn only

the minimal shared information, i.e., information shared between the image and all

captions that are sufficient to minimize the contrastive discrimination objective. An
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illustration of minimal shared information and a task-optimal representation is given

in Figure 4.2.

Image Latent
Variables Captions
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(a) Minimal shared information.

Image Latent
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(b) Task-optimal information.

Figure 4.2: Synthetic shortcuts in the context of minimal shared and task-optimal information
for vision-language representation learning with multiple captions per image. The purple
color represents features shared among the image and all captions (minimal shared informa-
tion). The yellow color represents caption-specific features (unique information). The grey
color indicates features that are not present in both the image and any of the captions (task-
irrelevant information). The red color indicates synthetic shortcuts. We demonstrate that while
shortcuts exist in both scenarios, minimal shared information also includes information shared
among the image and all associated captions, whereas task-optimal information combines both
minimal shared information and caption-specific information.

Motivated by the abovementioned problems, we address the following question:

In the context of VL representation learning with multiple captions per image, to
what extent does the presence of a shortcut hinder learning task-optimal represen-
tations?

To answer this question, we investigate the problem of shortcut learning for VL

representation learning with multiple captions per image. We do this by introducing

the framework for synthetic shortcuts for vision-language (SVL) for adding additional,

easily identifiable information to image-caption tuples. The information that we add

is represented as identifiers that are applied to both image and caption; these iden-

tifiers do not bear any semantic meaning. The identifiers provide additional shared

information between the image and captions, which is a subset of the total shared in-

formation between the image and the caption. For details and examples of shortcuts,

refer to Section 4.3, where Figure 4.4 illustrates an example of an image-caption pair

with a shortcut added. The framework allows us to investigate how much the encoder

model relies on the added shortcut during training and evaluation, and hence how

much of the relevant information is still captured if a shortcut solution is available.

Overall, our SVL framework allows us to investigate the shortcut learning problem in

a controlled way. We focus on image-caption retrieval (ICR) as an evaluation task be-

cause contrastive losses directly optimize for the ICR evaluation task, which assesses
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the quality of the learned representations by computing a similarity score between

images and captions (Radford et al., 2021; Yuksekgonul et al., 2023). To investigate the

problem, we run experiments on two distinct models: (i) CLIP (Radford et al., 2019),

a large-scale model that we fine-tune; and (ii) VSE++ (Faghri et al., 2018), a relatively

small model that we train from scratch. We evaluate the models’ performance on

the Flickr30k (Young et al., 2014) and MS-COCO (Lin et al., 2014; Chen et al., 2015)

and benchmarks. The benchmarks are constructed in such a way that each image is

associated with five captions and each caption represents a concise summary of the

corresponding image.

Therefore, the contributions of this chapter are two-fold:

I We present a framework for investigating the problem of shortcut learning for

contrastive vision-language representation learning in a controlled way: We

introduce the framework for synthetic shortcuts for vision-language. The frame-

work enables the injection of synthetic shortcuts into image-caption tuples in

the training dataset. We use the framework to investigate and understand the

extent to which contrastive VL models rely on shortcuts when a shortcut so-

lution is available. We run our experiments using CLIP and VSE++, two dis-

tinct vision-language models (VLMs). We evaluate the models’ performance

on the Flickr30k and MS-COCO benchmarks. We evaluate the effectiveness of

contrastive VL models by comparing their performance with and without syn-

thetic shortcuts. We demonstrate that both models trained from scratch and

fine-tuned, large-scale pre-trained foundation models mainly rely on shortcut

features and do not learn task-optimal representations. Consequently, we show

that contrastive losses mainly capture the easy-to-learn discriminatory features

that are shared among the image and all matching captions, while suppressing

other task-relevant information. Hence, we argue that contrastive losses are not

sufficient to learn task-optimal representations for VL representation learning.

II We evaluate two shortcut learning reduction methods on our proposed train-

ing and evaluation framework: We investigate latent target decoding (LTD) and

implicit feature modification (IFM) using our SVL training and evaluation frame-

work. While both methods improve performance on the evaluation task, our

framework poses challenges that existing shortcut reduction techniques can only

partially address, as the performance is not on par with models trained without

synthetic shortcuts. These findings underline the importance and complexity of

our framework in studying and evaluating shortcut learning within the context

of contrastive VL representation learning.
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4.2 background and analysis

In this section, we present the notation, setup, and assumptions on which we base

the chapter. Additionally, we conduct an analysis of contrastive VL representation

learning with multiple captions per image.

4.2.1 Preliminaries

Notation. We closely follow the notation from (Brown et al., 2020; Hendriksen et

al., 2023; Bleeker et al., 2022). Let D be a dataset of N image-caption tuples: D ={(
xi
I , {xi

Cj
}k

j=1

)}N

i=1
. Each tuple i ∈ N contains one image xi

I and k captions xi
Cj

,

where 1 ≤ j ≤ k. All captions in tuple i ∈ N are considered as matching captions w.r.t.

image xI in the tuple i. The latent representation of an image-caption pair from a tuple

i is denoted as zi
I and zi

Cj
respectively. During training, we sample image-caption pairs

from the dataset D and optimize for the evaluation task T. We include all captions in

the dataset once per training epoch, hence, each image is sampled k times.

Given an image xI , a set of k associated captions K = {xCj
}k

j=1, and one caption ran-

domly sampled from the set xC ∈ K, we define the following representations: (i) zSUF
C→I

as sufficient representation of the caption xC that describes the image xI ; (ii) zSUF
I→C as

representation of the image xI sufficient for the caption xC ; (iii) zMIN
I→C as representation

of the image xI that is minimally sufficient for the caption xC ; and (iv) zOPT
I→K as represen-

tation of the image xI that is optimal for the set of captions K given the task T.

In addition, we write SSynSC for a synthetic shortcut, S for the original shared infor-

mation, i.e., information that does not contain synthetic shortcuts, S+ for the shared

information that includes a synthetic shortcut, and R+ for task-relevant information

that contains a synthetic shortcut.

In the context of task relevance, we define R and ¬R as task-relevant and task-

irrelevant information, respectively, and C as task-relevant information specific for

caption xC . See Appendix 4.A, Table 4.A.1 for the notation overview.

Setup. We work with a dual-encoder setup, with an image encoder and a caption

encoder that do not share parameters. The image encoder fθ(·) takes an image xI as

input and returns its latent representation: zI := fθ(xI ). Similarly, the caption encoder
gϕ(·) takes a caption xC as input, and encodes the caption into a latent representa-

tion: zC := gϕ(zC). Both zC and zI are unit vectors projected into d-dimensional

multi-modal space: zC ∈ Rd, zI ∈ Rd. For an overview of notation, we refer to

Appendix 4.A, Table 4.A.1.

Assumptions. Given an image-caption tuple, we assume that each caption in the tuple

is distinct from the other captions in the tuple. We also assume that each caption in
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Shared information

Caption A task-relevant information

Task-relevant information

Caption B task-relevant information
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H(CA)

Figure 4.3: We define H(xI ) as image information, H(xCA
) and H(xCB

) as caption information;
both captions only describe the information depicted in the image and contain shared and
caption-specific information. We further define CA = I(xI ; xCA

| xCB
) and CB = I(xI ; xCB

|
xCA

) as caption-specific information; S = I(xI ; xCA
; xCB

) as shared information; ¬R = H(xI |
xCA

, xCB
) as task-irrelevant information; R = CA + CB + S as task-relevant information.

the tuple contains two types of task-relevant information: (i) shared information, i.e.,

information shared with other captions in the same tuple, and (ii) caption-specific

information, i.e., information that is not shared with the other captions. For simplicity,

we base our subsequent analysis on tuples where one image xI is associated with

two captions xCA
and xCB

:
(

xI , {xCA
, xCB
}
)

. However, the analysis described in this

section can be extended to a case with more than two captions. We treat images and

captions as views and define xI , xCA
, and xCB

to be random variables of an image and

two matching captions, with the joint distribution p(xI , xCA
, xCB

). For more details on

assumptions and problem definition, we refer to Appendix 4.B.

4.2.2 Analysis of Contrastive Vision-Language Representation Learning for Multiple
Captions per Image

InfoMax. We start our analysis of contrastive VL representation learning by introduc-

ing the InfoMax optimization objective, a typical loss for VL representation learning.

The goal of an InfoMax optimization objective, e.g., InfoNCE (Oord et al., 2018), is

to maximize the mutual information (MI) between the latent representations of two

views of the same data (Tschannen et al., 2020). Therefore, the optimization objective

is equivalent to: max fθ ,gϕ
I(zI ; zC) where zI:

= fθ(xI ) and zC := gϕ(xC).

Minimally Sufficient Image Representation. During training, we sample batches of

image-caption. The optimization involves maximizing the MI between the image rep-

resentation zI and the matching caption representation zC . (Wang et al., 2022a) argue

that, since all supervision information for one view (i.e., the image) comes from the

other view (i.e., the caption), the representations learned contrastively are approxi-

mately minimally sufficient. Following (Tian et al., 2020b; Wang et al., 2022a), we

extend the definition of sufficient representation to VL context and define sufficient

caption representations, sufficient image representations, and minimally sufficient im-



52 shortcuts in vision-language representation learning

age representation.

Definition 3 (Sufficient caption representation). Given an image xI , and a set of matching
captions C = {xCA

, xCB
}, the representation zSUF

C→I of caption xC ∈ C is sufficient for image xI
if, and only if, I(zSUF

C→I ; xI ) = I(xC ; xI ).

The sufficient caption representation zSUF
C→I contains all the information about image

xI in caption xC .

Definition 4 (Sufficient image representation). Given an image xI , and a set of matching
captions C = {xCA

, xCB
}, the representation zSUF

I→C of image xI is sufficient for caption xC ∈ C
if, and only if, I(zSUF

I→C ; xC) = I(xI ; xC).

Similarly, the sufficient image representation zSUF
I→C contains all the shared informa-

tion between an image xI and a caption xC . Note that a sufficient image representation

can be sufficient w.r.t. multiple captions.

Definition 5 (Minimally sufficient image representation). Given an image xI , and a set
of matching captions C = {xCA

, xCB
}, the sufficient image representation zMIN

I→C of image xI
is minimally sufficient for caption xC ∈ C if, and only if, I(zMIN

I→C ; xI ) ≤ I(zSUF
I→C ; xI ), for all

zSUF
I→C that are sufficient.

Intuitively, zMIN
I→C comprises the smallest amount of information about xI (while

still being sufficient) and, therefore, only contains the information that is shared with

caption xC , i.e., the non-shared information is suppressed.

Task-Optimal Image Representation. The definition of task-optimal image representa-

tion is based on the notion of task-relevant information. In the context of VL represen-

tation learning with multiple captions per image, we define task-relevant information

as all information described by the matching captions. That includes both caption-

specific and shared information. Consequently, task-optimal image representation is

image representation that is sufficient w.r.t. all matching captions.

Formally, following assumptions from Appendix 4.B.2, we define task-relevant infor-

mation R as all the information described by the matching captions. The task-relevant

information can be expressed as follows:

R︸︷︷︸
Task-relevant
information

= H(xI )︸ ︷︷ ︸
Image

information

−H(xI | xCA
, xCB

)︸ ︷︷ ︸
Task-irrelevant

information

= I(xI ; xCA
| xCB

)︸ ︷︷ ︸
CA-specific

task-relevant information

+ I(xI ; xCB
| xCA

)︸ ︷︷ ︸
CB-specific

task-relevant information

+ I(xI ; xCA
; xCB

)︸ ︷︷ ︸
Shared

information

.
(4.1)

Similarly, task-irrelevant information ¬R is the image information not described by

the captions. Figure 4.3 illustrates both definitions.
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The multi-view assumption states that task-relevant information for downstream

tasks comes from the information shared between views (Shwartz-Ziv and LeCun,

2023). However, in the case of VL representation learning with multiple captions per

image, task-relevant information R includes both shared information S, and caption-

specific information CA and CB (Eq. 4.1).

Definition 6 (Task-optimal image representation). Given an image xI , and a set of match-
ing captions C = {xCA

, xCB
}, the representation zOPT

I→C is task-optimal image representation for
all matching captions if, and only if, I(zOPT

I→C ; xC) = I(xI ; xC), for all xC ∈ C.

In other words, task-optimal image representations contain all the information that

the image shares with the matching captions. Hence, a task-optimal image represen-

tation is sufficient w.r.t. all matching captions. The information contained in the task-

optimal image representation includes both shared and caption-specific information.

Therefore, a task-optimal image representation can never be a minimally sufficient

image representation w.r.t. to a specific caption.

Theorem 1 (Suboptimality of contrastive learning with multiple captions per image).

Given an image xI , a set of matching captions C = {xCA
, xCB
}, and a contrastive learning loss

function LInfoNCE that optimizes for task T, image representations learned during contrastive
learning will be minimally sufficient and will never be task-optimal image representations.

The proof is provided in Appendix 4.C. Rephrasing Theorem 1, given an image and

two captions that form two image-caption pairs, (xI , xCA
) and (xI , xCB

), and assuming

that contrastive loss optimizes the image encoder to be minimally sufficient w.r.t. to

caption xCA
during a training step, all task-relevant information CB specific to caption

xCB
will be suppressed in zI . Hence, the resulting image representation will not be

optimal for the task T.

Theorem 1 highlights a gap between minimal sufficient representations learned dur-

ing contrastive training with the InfoNCE loss and the task-optimal image representa-

tions in the context of learning VL representations with multiple captions per image.

Although the InfoMax loss does not have an explicit constraint to compress informa-

tion, prior work indicates that feature suppression is happening (Shwartz-Ziv and

LeCun, 2023; Robinson et al., 2021). Hence, we question if contrastive loss can be used

to learn task-optimal image representations in the context of multiple captions per

image.

Furthermore, Theorem 1 implies that in the context of contrastive VL representation

learning with multiple captions per image, the minimally sufficient representation,

which discards non-shared information, is not the same as the task-optimal represen-

tation that comprises both caption-specific and shared information. This suggests that

the features learned during contrastive learning might be shortcuts, i.e., easy-to-detect
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discriminatory features that minimize the contrastive optimization objective but are

not necessarily sufficient for solving the evaluation task. To examine this problem, we

introduce a synthetic shortcuts framework that allows us to investigate the problem of

suboptimality of contrastive learning with multiple captions per image in a controlled

way.

4.3 synthetic shortcuts to control shared information

In Section 4.2 we show the suboptimality of the contrastive InfoNCE loss with multiple

captions per image. In the case of real-world VL datasets with multiple captions

per image, there are no annotations that indicate the information shared between the

image and captions and the information specific to each caption. Hence, we cannot

directly measure how much of the shared and unique information is captured by the

representations.

A player up to bat in a baseball game. 1 0 1 9 9 2

Figure 4.4: An image-caption pair
from the MS-COCO dataset with a
shortcut added to both the image and
the caption.

Synthetic Shortcuts. In this section, we intro-

duce the training and evaluation framework for

synthetic shortcuts for vision-language (SVL). We de-

note the synthetic shortcuts for image-caption data as

SSynSC. The purpose of the framework is to in-

troduce additional and easily identifiable informa-

tion shared between an image and the matching

captions that lacks any semantic meaning. The

shortcuts we use in this chapter are represented as

numbers that we add to images and captions. For

images, we add the shortcut number by adding

MNIST images as an overlay to the original im-

ages. For captions, we append the numbers of

the shortcut as extra tokens at the end of the caption.

Figure 4.4 illustrates an example of an image-caption pair with an added shortcut.

The example contains an image with the caption: ‘A player up to bat in a baseball

game. 1 0 1 9 9 2.’ Here, ‘1 0 1 9 9 2’ is a shortcut added to both the image and the

caption. For the image modality, we add the shortcut by overlaying MNIST images

at the top of the original image. For the text modality, we append the shortcut as

additional tokens at the end of the caption. This identifier provides an additional link

between the image and the caption without carrying any semantic meaning related to

their content. Additional examples are shown in Figure 4.D.1 in the Appendix 4.D.

If contrastive losses learn task-optimal representations, then the presence of syn-

thetic shortcuts should not negatively impact the evaluation performance, since syn-
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thetic shortcuts represent additional information and the remaining task-relevant infor-

mation is intact. By incorporating synthetic shortcuts into the image-caption dataset,

the shared information would include the information that was originally shared and

the synthetic shortcut: S+ = S + SSynSC. Hence, the task-relevant information would

comprise caption-specific information that was originally shared and a synthetic short-

cut: R+ = CA + CB + S + SSynSC. If injecting a synthetic shortcut influences the perfor-

mance negatively, we can conclude that by learning to represent a synthetic shortcut

the model suppresses other task-relevant information in favor of the shortcut, hence

the representation is not task-optimal. The setup is inspired by the “datasets with ex-

plicit and controllable competing features,” introduced by (Chen et al., 2021), but we

adapt this setup to the VL scenario.

For experiments, we use the Flickr30k and MS-COCO image-caption datasets, that

consist of image-caption tuples, each image is associated with five captions. During

training, we sample a batch B of image-caption pairs B = {(xi
I , xi
Cj
), . . . }|B|i=1, from

dataset D, and apply shortcut sampling. We inject the shortcuts in a manner that pre-

serves the original information of the images and captions. Furthermore, we append

the shortcut after applying data augmentations to ensure that the shortcut is present

in both the images and captions (i.e., the shortcut is not augmented away). We refer to

Figure 4.D.1 in the Appendix 4.D.4 for some examples. The training, evaluation, and

implementation details of the shortcut sampling are provided in Appendix 4.D.4.

We define the following experimental setups:

I No shortcuts: As a baseline, we fine-tune a pre-trained CLIP (Radford et al., 2021)

and train VSE++ (Faghri et al., 2018) from scratch on Flickr30k and MS-COCO,

without using any shortcuts. The experimental setup for training both models

is provided in Appendix 4.D.2 and 4.D.3. The goal of this setup is to show

the retrieval evaluation performance without adding any shortcuts for both a

large-scale pre-trained foundation model and a small-scale model trained from

scratch.

II Unique shortcuts: We add a unique shortcut to each image-caption tuple i ∈ D
in the dataset. In this setup, each image caption pair can be uniquely matched

during training by only detecting the shortcut. For each tuple i ∈ D, we use the

number i as the number of the shortcut we inject to the image and captions in

the tuple. If the contrastive loss learns task-optimal representations, the down-

stream evaluation performance should not decrease when training with unique

shortcuts.

III Unique shortcuts on only one modality: To show that the shortcuts do not interfere

with the original task-relevant information (S, CA, and CB) of the images and

captions, we create a dataset with only shortcuts on either the image or caption
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modality. Therefore, the shortcut cannot be used by the encoders to match an

image-caption pair. Hence, we expect the encoders to ignore the shortcuts and

extract the features from the original data similar to the features learned by the

baseline models in experimental setup I.

IV N bits of shortcuts: In this setup, for each image-caption pair in the training batch

B, we randomly sample a shortcut number from the range [0, 2n], where n is

the number of bits. The higher the value of n, the more image-caption pairs in

the training batch will have by expectation a unique shortcut, and, the less the

model has to rely on S and the remaining task-relevant information to solve the

contrastive objective. The goal of this setup is to show that, the more unique

(shortcut) information is present per sample in the batch, the less contrastive

models rely on the remaining task-relevant information.

It should be noted that the shortcuts we add are independent of the image-caption

pairs. However, the goal of the SVL framework is to measure the effect of the presence

of additional easy-to-detect shared information on the learned representations.

Evaluation Method. To show the effect of the injected shortcuts on retrieval evaluation

performance, we evaluate both with and without adding the shortcuts during evalu-

ation. When training with unique shortcuts, we add a unique shortcut to each tuple

in the test set as well. When training with shortcuts on either one of the two modal-

ities, we only evaluate without shortcuts to show that training with shortcuts on one

modality does not influence performance. When training with n bits of shortcuts, we

add the shortcut mod (i, n) (modulo) to each tuple i in the evaluation set, to make

sure we use the same number of shortcuts during evaluation as during training.

4.4 synthetic shortcuts and their impact on learned
representations

First, we train and evaluate both a CLIP and VSE++ without shortcuts on the Flickr30k

and MS-COCO dataset for the image-caption retrieval task as a baseline. We use the

recall sum (i.e., the sum of R@1, R@5, and R@10 for both image-to-text (i2t) and text-to-

image (t2i) retrieval) as evaluation metric (see Appendix 4.B.1 for the evaluation task

description).
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(a) Evaluation results for the CLIP model when using different shortcut sampling setups.
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(b) Evaluation results for the VSE++ model when using different shortcut sampling setups.

Figure 4.5: Effect of synthetic shortcuts on CLIP and VSE++ performance on ICR task. The
dotted line represents the maximum achievable recall sum, while the dashed line for CLIP
indicates its zero-shot evaluation performance. (Best viewed in color.)

We visualize the results in Figure 4.5. The dotted line (in Figure 4.5a and 4.5b)

indicates the maximum evaluation score (i.e., 600). For CLIP, we also provide the zero-

shot performance of the model, indicated by the dashed line in Figure 4.5a. When

referring to specific results in Figure 4.5, we use the color of the corresponding bar

and legend key in brackets in the text.

4.4.1 Findings

Based on Figure 4.5, we draw the following conclusions:

I When training CLIP and VSE++ with only shortcuts on either the caption modal-

ity (in Figure 4.5, the corresponding bar/legend box is colored ) or on the

image modality ( , in Figure 4.5), we do not observe a drop in evaluation

scores for CLIP compared to the baseline model ( , in Figure 4.5a). For VSE++

we only observe a slight drop in evaluation score when training with shortcuts

on the caption modality (again , mainly for MS-COCO, in Figure 4.5b). There-
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fore, we conclude that the synthetic shortcuts do not interfere with the original

shared information S or other task-relevant information.

II When training the models with unique shortcuts, we observe for both CLIP and

VSE++ that when evaluating with shortcuts ( , in Figure 4.5), the models

obtain a perfect evaluation score. When evaluating without shortcuts ( , in

Figure 4.5) the evaluation score for VSE++ drops to zero and for CLIP below the

zero-shot performance. We conclude that with unique shortcuts: (i) both CLIP

and VSE++ fully rely on the shortcuts to solve the evaluation task, (ii) VSE++ has

not learned any other shared or task-relevant information other than the short-

cuts (since it is trained from scratch, only detecting the shortcuts is sufficient to

minimize the contrastive loss), and (iii) fine-tuned CLIP has suppressed original

features from the zero-shot model in favor of the shortcuts.

III When training the models with N bits of shortcuts, we observe for both CLIP and

VSE++ that the larger the number of bits we use during training and when eval-

uating without shortcuts ( , in Figure 4.5), the bigger the drop in evaluation

performance. When we evaluate with shortcuts ( , in Figure 4.5), the evalua-

tion performance improves as we use more bits compared to the baseline without

shortcuts , in Figure 4.5). For VSE++, evaluating without shortcuts ( , in

Figure 4.5b) results in a drop to zero when having a large number of bits. For

CLIP, the evaluation performance drops below the zero-shot performance. If we

train with 0 bits of shortcuts (i.e., the shortcut is a constant) we do not observe

any drop or increase in evaluation scores for CLIP.

4.4.2 Upshot

Given the findings based on Figure 4.5 we conclude that a contrastive loss (i.e., In-

foNCE) mainly learns easily detectable minimal features shared among pairs of images

and captions. The learned features are sufficient to minimize the contrastive objective

while suppressing the remaining shared and/or task-relevant information. If con-

trastive losses are sufficient to learn task-optimal representations for image-caption

matching, these shortcuts should not adversely impact the evaluation performance.

Moreover, if the contrastive loss would only learn features that are shared among the

image and all captions (i.e, S), we should not observe a drop in performance to 0

for the VSE++ model when training with unique shortcuts, since there is still a lot of

task-relevant information present in S. Especially in a training setup where a model

is trained from scratch or fine-tuned on small datasets, the easy-to-detect features

are likely not equivalent to all task-relevant information in the images and captions.

Hence, we conclude that contrastive loss itself is not sufficient to learn task-optimal
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representations of the images (and sufficient representations of captions) and that it

only learns the minimal easy-to-detect features that are needed to minimize the con-

trastive objective.

4.5 reducing shortcut learning

In the earlier section, we have demonstrated that contrastive loss mainly relies on the

minimal, easy-to-detect features shared among image-caption pairs while suppressing

remaining task-relevant information. In this section, we describe two methods that

help to reduce shortcut learning for contrastive learning on our SVL framework: latent

target decoding (Bleeker et al., 2022) and implicit feature modification (Robinson et al.,

2021).

4.5.1 Latent Target Decoding

Latent target decoding (LTD) (Bleeker et al., 2022) is a method to reduce predictive

feature suppression (i.e., shortcut learning) for resource-constrained contrastive image-

caption matching. The contrastive objective (i.e., InfoNCE) is combined with an addi-

tional reconstruction loss, which reconstructs the input caption from the latent repre-

sentation of the caption zi
Cj

. We refer to Appendix 4.E.2 for the mathematical definition

of LTD. Instead of reconstructing the tokens of the input caption in an auto-regressive

manner (i.e., auto-encoding), the caption is reconstructed non-auto-regressively, by

mapping the caption representation into the latent space of a Sentence-BERT (Reimers

and Gurevych, 2019; Song et al., 2020) and minimizing the distance (i.e., reconstruct-

ing) between the reconstruction and the Sentence-BERT representation of the caption

xi
Cj

. The assumption is that the target generated by the Sentence-BERT model contains

all task-relevant information in the caption. Hence, by correctly mapping the latent

caption representation zi
Cj

into the latent space of Sentence-BERT, the caption encoder

cannot suppress any task-relevant information or rely on shortcut solutions. LTD is

implemented both as a dual-loss objective (i.e., the contrastive loss and LTD are added

up) and as an optimization constraint while minimizing the InfoNCE loss, by imple-

menting the loss as a Lagrange multiplier.

Experimental Setup. We use the LTD implementation and set-up similar to Bleeker

et al. (2022). We train both CLIP and VSE++ with LTD, implemented as either dual

loss or an optimization constraint. When implementing LTD as a constraint, we try

η ∈ {0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3} as bound values.

Similar to (Bleeker et al., 2022), when implementing LTD as a dual loss, we use β = 1
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as balancing parameters. We train both with and without unique shortcuts. We do this

to show (i) what the performance improvement is compared to using only InfoNCE,

and (ii) to what degree LTD prevents full collapse to shortcut features. For each model

and dataset, we take the training setup that results in the highest performance on the

validation set.

4.5.2 Implicit Feature Modification

Implicit feature modification (IFM) (Robinson et al., 2021) is a method, originally in-

troduced in the context of representation learning for images, that applies perturba-

tions to logits used for guiding contrastive models. IFM perpetuates features that

the encoders use during a training step to discriminate between positive and negative

samples. By doing so, IFM alters the features that are currently used to solve the dis-

crimination task, to avoid the InfoNCE loss to learn shortcut solutions. How much of

the features are removed, is defined by a perturbation budget ϵ. IFM is implemented

as a dual loss in combination with the InfoNCE loss. For the mathematical definition

of IFM, we refer to Appendix 4.E.3.

Experimental Setup. We apply a similar experimental set-up for IFM as for LTD.

We apply IFM both to CLIP and to VSE++, both with and without unique shortcuts.

Similar to (Robinson et al., 2021), we try different perturbation budgets ϵ, we try

ϵ ∈ {0.05, 0.1, 0.2, 0.5, 1}. In line with the LTD setup, we take the training setup that

results in the highest performance on the validation set.

4.5.3 Method Comparison

Both LTD and IFM aim to mitigate shortcut learning through different approaches.

LTD aims to learn all task-relevant information by reconstructing the input captions.

In contrast, IFM perturbs the discriminative features in the latent space of the encoder

and does not rely on a reconstruction objective. Overall, both methods represent dis-

tinct strategies for improving the robustness and generalization capabilities of VL rep-

resentation learning.

In the following section, we present experimental results with LTD and IFM, provid-

ing insight into their effectiveness in mitigating shortcut learning.
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4.6 experimental results

4.6.1 Does Latent Target Decoding Reduce Shortcut Learning?

In Table 4.1 we summarize the effect of LTD on reducing shortcut learning.

For CLIP, for both the Flickr30k and MS-COCO dataset, we do not observe an in-

crease in recall scores when fine-tuning with LInfoNCE+LTD compared to models that

are only fine-tuned with LInfoNCE. LTD has originally been proposed for resource-

constrained VL models. We argue that the additional features that LTD can extract are

either already present in the pre-trained CLIP model, or not relevant for the evaluation

task. However, when fine-tuning with LInfoNCE+LTD and in the presence of shortcuts

in the training data, degradation in recall scores is significantly lower than when fine-

tuned only with the LInfoNCE. This shows that LTD can reduce the suppression of

features in favor of the shortcut features when fine-tuning large-scale VL models.

Across the board, VSE++ models trained with the LInfoNCE+LTD loss consistently out-

perform the LInfoNCE loss, both for i2t and t2i retrieval and both when trained either

with or without shortcuts, as indicated by higher recall@k scores; this is consistent with

the findings presented in (Bleeker et al., 2022)). For both the Flickr30k and MS-COCO

dataset, when trained with the LInfoNCE and with shortcuts present in the training

data, the model performance collapses to around 0 in the absence of shortcuts (as

we have seen in Section 4.4). However, when we train with shortcuts in the training

data and with LInfoNCE+LTD, we observe, for both Flickr30k and MS-COCO, a signifi-

cant gain in performance. The performance improvement is bigger for Flickr30k than

for MS-COCO. In general, the recall scores are still significantly lower than training

without shortcuts, however, the models do not solely rely on the shortcuts anymore

to minimize the contrastive loss and are able during evaluation (in the absence of

shortcuts) to still correctly match image-caption pairs with each other. The results in

Table 4.1 show that LTD is able, in the presence of shortcuts in the training data, to

guide (small-scale) VL models that are trained from scratch to not only learn the short-

cut features that minimize the contrastive training objective but also represent other

remaining task-relevant features in the data that are not extracted by LInfoNCE.

4.6.2 Does Implicit Feature Modification Reduce Shortcut Learning?

In Table 4.2 we summarize the effect of IFM on reducing shortcut solutions.

For CLIP, we observe that LInfoNCE+IFM, when training without shortcuts in the train-

ing data, only improves performance for the MS-COCO dataset for the t2i task. How-

ever, for both Flickr30k and MS-COCO we observe that, when training with unique

shortcuts in the training data, fine-tuning with LInfoNCE+IFM results in a significantly
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Table 4.1: Mean and variance (over three training runs) recall@k evaluation scores for the
Flickr30k and MS-COCO datasets for image-to-text and text-to-image retrieval. We train with
two loss functions: LInfoNCE and LInfoNCE+LTD. We train either with (✓) or without (✗) short-
cuts. For the model trained with LInfoNCE+LTD, we provide the hyper-parameters of the best-
performing model. η indicates that the best-performing model uses LTD implemented as an
optimization constraint with bound η. β indicates that the best-performing model uses LTD
implemented as a dual-loss with β = 1.

i2t t2i

Loss SSynSC R@1 R@5 R@10 R@1 R@5 R@10 rsum

Flickr30k

CLIP

LInfoNCE ✗ 86.9± 0.1 97.4± 0.1 99.0± 0.0 72.4± 0.1 92.1± 0.0 95.8± 0.0 543.5± 1.1

LInfoNCE+LTD, β = 1 ✗ 86.5± 0.6– 97.1± 0.0↓ 98.5± 0.0↓ 72.4± 0.0– 92.3± 0.0↓ 95.9± 0.0↓ 542.8± 0.8–

LInfoNCE ✓ 57.2± 8.3 84.0± 4.8 91.0± 1.9 44.9± 4.5 74.9± 6.0 84.2± 2.5 436.2± 145.0

LInfoNCE+LTD, β = 1 ✓ 64.0± 1.3↑ 87.8± 0.9↑ 93.2± 0.8↑ 50.7± 0.6↑ 79.8± 0.7↑ 88.1± 0.5↑ 463.6± 17.3↑

VSE++

LInfoNCE ✗ 52.6± 1.1 79.8± 0.1 87.8± 0.1 39.5± 0.3 69.8± 0.0 79.4± 0.1 409.0± 4.0

LInfoNCE+LTD, η = 0.2 ✗ 54.1± 0.1↑ 81.1± 0.8↑ 88.6± 0.1↑ 42.5± 0.0↑ 71.9± 0.1↑ 81.3± 0.0↑ 419.6± 0.1↑

LInfoNCE ✓ 0.1± 0.0 0.6± 0.1 1.1± 0.1 0.1± 0.0 0.5± 0.0 1.0± 0.0 3.4± 0.6

LInfoNCE+LTD, η = 0.05 ✓ 24.7± 0.5↑ 51.8± 0.7↑ 65.6± 1.4↑ 20.7± 1.0↑ 49.2± 0.6↑ 62.6± 1.2↑ 274.6± 4.6↑

MS-COCO

CLIP

LInfoNCE ✗ 63.8± 0.3 86.1± 0.2 92.3± 0.0 46.3± 0.3 74.8± 0.1 84.1± 0.2 447.5± 0.5

LInfoNCE+LTD, β = 1 ✗ 63.8± 0.0– 86.1± 0.0– 92.3± 0.0– 46.3± 0.0– 74.7± 0.0– 84.1± 0.0– 447.4± 0.0–

LInfoNCE ✓ 13.6± 0.9 31.5± 2.4 42.2± 3.7 7.3± 0.6 22.1± 1.0 32.7± 1.7 149.4± 32.7

LInfoNCE+LTD, β = 1 ✓ 18.9± 0.1↑ 41.8± 0.1↑ 54.1± 0.1↑ 16.5± 0.0↑ 39.4± 0.0↑ 52.6± 0.1↑ 223.4± 0.2↑

VSE++

LInfoNCE ✗ 42.2± 0.1 72.7± 0.1 83.2± 0.1 30.9± 0.0 61.2± 0.1 73.5± 0.1 363.8± 2.3

LInfoNCE+LTD, η = 0.1 ✗ 43.6± 0.1↑ 73.5± 0.0↑ 83.7± 0.0↑ 32.4± 0.1↑ 62.5± 0.0↑ 74.7± 0.0 370.5± 0.1↑

LInfoNCE ✓ 0.0± 0.0 0.1± 0.0 0.2± 0.0 0.0± 0.0 0.1± 0.0 0.2± 0.0 0.7± 0.0

LInfoNCE+LTD, η = 0.01 ✓ 3.9± 0.0↑ 13.7± 0.6↑ 21.6± 0.9↑ 3.1± 0.2↑ 11.0± 1.6↑ 18.1± 3.0↑ 71.3± 3.6↑

lower performance drop in recall score than when fine-tuning with the LInfoNCE. Sim-

ilar to LTD, the recall@k scores are still lower than when trained without shortcuts

in the training data. We conclude that IFM is sufficient to reduce the suppression of

features in favor of the shortcut features when fine-tuning a large-scale VL model, as

indicated by higher recall@k scores when evaluating without shortcuts.

For VSE++, both for the Flickr30k and MS-COCO dataset, we do not observe that

LInfoNCE+IFM outperforms the LInfoNCE, both with and without shortcuts present in
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Table 4.2: Mean and variance (over three training runs) recall@k evaluation scores for the
Flickr30k and MS-COCO datasets for image-to-text and text-to-image retrieval. We train with
two loss functions: LInfoNCE and LInfoNCE+IFM. We train either with (✓) or without (✗) short-
cuts. For the model trained with LInfoNCE+IFM, we provide the hyper-parameters of the best-
performing model.

i2t t2i

Loss SSynSC R@1 R@5 R@10 R@1 R@5 R@10 rsum

Flickr30k

CLIP

LInfoNCE ✗ 86.9± 0.1 97.4± 0.0 98.8± 0.0 72.8± 0.2 92.1± 0.0 95.6± 0.0 543.5± 1.3

LInfoNCE+IFM, ϵ = 0.05 ✗ 87.4± 0.1↑ 97.4± 0.2– 99.1± 0.0– 73.2± 0.0– 92.2± 0.0– 95.6± 0.0– 544.9± 0.2–

LInfoNCE ✓ 57.9± 0.3 84.6± 0.8 91.3± 0.0 43.9± 2.2 74.6± 0.8 84.4± 0.4 436.7± 18.8

LInfoNCE+IFM, ϵ = 0.1 ✓ 73.8± 0.8↑ 91.5± 0.5↑ 95.6± 0.0↑ 58.9± 0.1↑ 84.4± 0.1↑ 91.1± 0.2↑ 495.2± 5.7↑

VSE++

LInfoNCE ✗ 52.9± 0.2 80.5± 0.1 87.6± 0.4 40.5± 0.1 68.8± 0.4 78.9± 0.3 409.3± 2.6

LInfoNCE+IFM, ϵ = 0.05 ✗ 52.4± 0.2↓ 76.9± 0.1↓ 85.3± 0.0↓ 39.1± 0.0↓ 68.8–± 0.1 78.2± 0.1↓ 400.7± 0.0↓

LInfoNCE ✓ 0.1± 0.0 0.4± 0.0 0.8± 0.0 0.1± 0.0 0.4± 0.0 1.0± 0.0 2.9± 0.0

LInfoNCE+IFM, ϵ = 0.05 ✓ 0.0± 0.0– 0.6± 0.1– 0.9± 0.2– 0.1± 0.0– 0.5± 0.0– 1.0± 0.0– 3.2± 0.8–

MS-COCO

CLIP

LInfoNCE ✗ 63.5± 0.1 86.0± 0.3 92.2± 0.0 46.3± 0.0 74.7± 0.0 84.2± 0.0 446.9± 0.9

LInfoNCE+IFM, ϵ = 0.05 ✗ 63.0± 0.1↓ 86.6± 0.1↓ 92.6± 0.2↓ 47.2± 0.0↑ 75.6± 0.0↑ 84.5± 0.0↑ 449.5± 1.7↑

LInfoNCE ✓ 13.9± 0.0 32.7± 0.1 43.8± 0.0 8.8± 0.0 24.7± 0.2 35.5± 0.5 159.4± 3.4

LInfoNCE+IFM, ϵ = 0.05 ✓ 23.4± 1.5↑ 46.5± 2.7↑ 58.2± 2.5↑ 17.1± 0.3↑ 38.9± 0.9↑ 51.3± 1.0↑ 235.5± 43.8↑

VSE++

LInfoNCE ✗ 41.7± 0.3 72.5± 0.1 83.1± 0.1 31.3± 0.0 61.1± 0.0 73.6± 0.0 363.4± 0.4

LInfoNCE+IFM, ϵ = 0.05 ✗ 40.2± 0.0↓ 70.8± 0.1↓ 81.6± 0.1↓ 30.8± 0.0↓ 61.5± 0.0↑ 74.3± 0.0↑ 359.3± 1.1↓

LInfoNCE ✓ 0.0± 0.0 0.1± 0.0 0.2± 0.0 0.0± 0.0 0.1± 0.0 0.2± 0.0 0.6± 0.0

LInfoNCE+IFM, ϵ = 0.05 ✓ 0.0± 0.0– 0.1± 0.0– 0.2± 0.0 – 0.0± 0.0– 0.1± 0.0– 0.2± 0.0– 0.7± 0.0–

the training data. We even observe that LInfoNCE+IFM, when training without short-

cuts, results in a decrease in performance across all recall@k metrics. When training

with LInfoNCE+IFM and with unique shortcuts in the training data, the evaluation per-

formance still collapses to around 0. The results in Table 4.2 show that IFM is not

sufficient to prevent models trained from scratch from fully collapsing to the artificial

shortcut solutions we introduce in this chapter (as opposed to LTD).
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4.6.3 Upshot

In this section, we have evaluated two methods for reducing shortcut learning on our

SVL framework: LTD and IFM. LTD proves effective in reducing shortcut learning

for both CLIP and VSE++. IFM demonstrates its efficacy solely during the fine-tuning

of CLIP. These findings indicate that our SVL framework is a challenging and inter-

esting framework to study and evaluate shortcut learning for contrastive VL models.

Moreover, our results show that shortcut learning is only partially addressed by the

evaluated methods since the evaluation results are not on par with the results on data

lacking synthetic shortcuts.

4.7 related work

We discuss related work on multi-view representation learning, vision-language learn-

ing, and shortcut learning.

4.7.1 Multi-View Representation Learning

To learn the underlying semantics of the training data, a subgroup of representation

learning methods involves training neural encoders that maximize the agreement be-

tween representations of the similar views (Oord et al., 2018; Hjelm et al., 2019; Chen

et al., 2020a; Radford et al., 2021; Bardes et al., 2022). In general, for uni-modal rep-

resentation learning, data augmentations are used to generate different views of the

same data point. One of the core assumptions in multi-view representation learn-

ing is that each view shares the same task-relevant information (Sridharan and Kakade,

2008; Zhao et al., 2017; Federici et al., 2020; Tian et al., 2020a; Shwartz-Ziv and Le-

Cun, 2023). However, the optimal view for contrastive self-supervised learning (SSL)

(i.e., which information is shared among views/which data augmentation is used)

is task-dependent (Tian et al., 2020b; Xiao et al., 2021). Therefore, maximizing the

mutual information (MI) between representations of views (i.e., shared information)

does not necessarily result in representations that generalize better to down-stream

evaluation tasks, since the representations may contain too much additional noise

that is irrelevant for the downstream task (Tian et al., 2020b; Tschannen et al., 2020).

An open problem in multi-view SSL is to learn representations that contain all task-

relevant information from views where each view contains distinct, task-relevant infor-

mation (Shwartz-Ziv and LeCun, 2023), this is especially a problem in the multi-modal

learning domain (Zong et al., 2023).

Chen et al. (2021) investigate multi-view representation learning for images using
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contrastive losses. They demonstrate that when multiple competing features exist that

redundantly predict the match between two views, contrastive models tend to focus

on learning the easy-to-represent features while suppressing other task-relevant infor-

mation. This results in contrastive losses mainly capturing the easy features, even if all

task-relevant information is shared between the two views, suppressing the remaining

relevant information.

Several optimization objectives have been introduced to either maximize the lower

bound on the MI between views and their latent representations (Oord et al., 2018;

Bachman et al., 2019; Hjelm et al., 2019; Tian et al., 2020a) or minimize the MI between

representations of views while keeping the task-relevant information (Federici et al.,

2020; Lee et al., 2021). To learn more task-relevant information that either might not

be shared between views or that is compressed by a contrastive loss, several works

proposed additional reconstruction objectives to maximize the MI between the latent

representation and input data (Tsai et al., 2021; Wang et al., 2022a; Li et al., 2023b;

Bleeker et al., 2022). Liang et al. (2023) introduce a multimodal contrastive objective

that factorizes the representations into shared and unique information, while also

removing task-irrelevant information by minimizing the upper bound on MI between

similar views.

4.7.2 Vision-language Representation Learning

The goal of VL representation learning is to combine information from the visual and

textual modalities into a joint representation or learn coordinated representations (Bal-

trusaitis et al., 2019; Guo et al., 2019b). The representation learning approaches can be

separated into several groups.

Contrastive methods represent one prominent category of VL representation meth-

ods. The approaches in this group are typically dual encoders. Early methods in

this category are trained from scratch; for instance, Frome et al. (2013) proposed a VL

representation learning model that features a skip-gram language model and a visual

object categorization component trained with hinge rank loss. Another subgroup of

methods uses a dual-encoder with a hinge-based triplet loss (Kiros et al., 2014; Li et

al., 2019a; Lee et al., 2018). (Kiros et al., 2014) use the loss for training a CNN-RNN

dual encoder. Li et al. (2019a) leverage bottom-up attention and graph convolutional

networks (Kipf and Welling, 2017) to learn the relationship between image regions.

Lee et al. (2018) add stacked cross-attention to use both image regions and words as

context.

Recently, contrastive approaches involve transformer-based dual-encoders trained

with more data than the training data from the evaluation set(s). ALBEF (Li et al.,

2021a) propose to contrastively align unimodal representations before fusion, while
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X-VLM (Zeng et al., 2022) employs an additional cross-modal encoder to learn fine-

grained VL representations. Florence (Yuan et al., 2021) leverages various adaptation

models for learning fine-grained object-level representations. CLIP (Radford et al.,

2021), a scaled-up dual-encoder, is pre-trained on the task of predicting which caption

goes with which image. ALIGN (Jia et al., 2021) uses a simple dual-encoder trained

on over a billion image alt-text pairs. FILIP (Yao et al., 2022) is a transformer-based

bi-encoder that features late multimodal interaction meant to capture fine-grained

representations. SLIP (Mu et al., 2022) combines language supervision and image

self-supervision to learn visual representations without labels. DeCLIP (Li et al.,

2022c) proposes to improve the efficiency of CLIP pretraining using intra-modality

self-supervision, cross-modal multi-view supervision, and nearest neighbor supervi-

sion.

Another line of work includes learning VL representations using models that are

inspired by BERT (Devlin et al., 2019). ViLBERT (Lu et al., 2019) and LXMERT (Tan

and Bansal, 2019) expand upon BERT by introducing a two-stream architecture, where

two transformers are applied to images and text independently, which is fused by

a third transformer in a later stage. B2T2 (Alberti et al., 2019), VisualBERT (Li et al.,

2019b), Unicoder-VL (Li et al., 2020a), VL-BERT (Su et al., 2020), and UNITER (Chen et

al., 2020b) propose a single-stream architecture, where a single transformer is applied

to both images and text. Oscar (Li et al., 2020d) uses caption object tags as anchor

points that are fed to the transformer alongside region features. BEIT-3 (Wang et al.,

2022b) adapt multiway transformers trained using cross-entropy loss (Bao et al., 2022).

Another category of methods for learning VL representations are generative meth-

ods, that imply learning VL representation by generating new instances of one modal-

ity conditioned on the other modality. For instance, BLIP (Li et al., 2022b) boot-

straps captions by generating synthetic captions and filtering out the noisy ones; BLIP-

2 (Li et al., 2023a) bootstraps VL representation learning and, subsequently, vision-to-

language generative learning. On the other hand, Tschannen et al. (2023) propose to

pretrain a encoder-decoder architecture via the image captioning task.

Shortcut Learning. Geirhos et al. (2020) define shortcuts in deep neural networks as

“decision rules that perform well on standard benchmarks but fail to transfer to more

challenging testing conditions, such as real-world scenarios.” In the context of deep

learning, a shortcut solution can also be seen as a discrepancy between the features that

a model has learned during training and the intended features that a model should

learn to perform well during evaluation. For example, shortcuts might be features

that minimize the training objective but are much easier to detect than the intended

features that are relevant to the evaluation task. Shortcut learning can be caused by

biases in the dataset or inductive biases in either the network architecture or training

objective.
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Hermann and Lampinen (2020) design a dataset with multiple predictive features,

where each feature can be used as a label for an image classification task. The authors

show that in the presence of multiple features that each redundantly predicts the target

label, the deep neural model chooses to represent only one of the predictive features

that are the easiest to detect, i.e., the model favors features that are easy to detect over

features that are harder to discriminate. Next to that, they show that features that are

not needed for a classification task, are in general suppressed by the model instead of

captured in the learned latent representations.

Robinson et al. (2021) show that contrastive losses can have multiple local minima,

where different local minima can be achieved by suppressing features from the input

data (i.e., the model learns a shortcut by not learning all task-relevant features). To

mitigate the shortcut learning problem, Robinson et al. (2021) propose implicit feature

modification, a method that perpetuates the features of positive and negative samples

during training to encourage the model to capture different features than the model

currently relies on.

Scimeca et al. (2022) design an experimental set-up with multiple shortcut cues in

the training data, where each shortcut is equally valid w.r.t. predicting the correct tar-

get label. The goal of the experimental setup is to investigate which cues are preferred

to others when learning a classification task.

Latent target decoding (LTD) is a method to reduce predictive feature suppression

(i.e., shortcuts) for resource-constrained contrastive ICR by reconstructing the input

caption in a non-auto-regressive manner. Bleeker et al. (2022) argue that most of the

task-relevant information for the ICR task is captured by the text modality. Hence,

the focus is on the reconstruction of the text modality instead of the image modality.

Bleeker et al. (2022) add a decoder to the learning algorithm, to reconstruct the input

caption. Instead of reconstructing the input tokens, the input caption is reconstructed

in a non-autoregressive manner in the latent space of a Sentence-BERT (Reimers and

Gurevych, 2019; Song et al., 2020) model. LTD can be implemented as an optimization

constraint and as a dual-loss. Li et al. (2023b) show that contrastive losses are prone

to feature suppression. They introduce predictive contrastive learning (PCL), which

combines contrastive learning with a decoder to reconstruct the input data from the

latent representations to prevent shortcut learning.

Adnan et al. (2022) measure the MI between the latent representation and the input

as a domain agnostic metric to find where (and when) in training the neural network

relies on shortcuts in the input data. Their main finding is that, in the presence of

a shortcut, the MI between the input data and the latent representation of the data

is lower than without a shortcut in the input data. Hence, the latent representation

captures less information of the input data in the presence of the shortcut and mainly

relies on the shortcut to predict the target.
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4.7.3 Our Focus

In this chapter, we focus on the problem of shortcut learning for VL in the context of

multi-view VL representation learning with multiple captions per image. In contrast

with previous (uni-modal) work on multi-view learning, we consider different cap-

tions matching to the same image as different views. We examine the problem by in-

troducing a framework of synthetic shortcuts designed for VL representation learning,

which allows us to investigate the problem in a controlled way. For our experiments,

we select two prevalent VL models that are solely optimized with the InfoNCE loss:

CLIP, a large-scale pre-trained model, and VSE++, a model trained from scratch. We

select models that are solely optimized with a contrastive loss, to prevent measuring

the effect of other optimization objectives on the shortcut learning problem.

4.8 conclusion

In this chapter, we focus on the shortcut learning problem of contrastive learning in

the context of vision-language (VL) representation learning with multiple captions per

image. We have proposed synthetic shortcuts for vision-language (SVL): a training

and evaluation framework to examine the problem of shortcut learning in a controlled

way. The key component of this framework is synthetic shortcuts that we add to

image-text data. Synthetic shortcuts represent additional, easily identifiable informa-

tion that is shared between images and captions. We fine-tune CLIP and train a VSE++

model from scratch using our training framework to evaluate how prone contrastive

VL models are to shortcut learning. Next, we have evaluated how shortcut learning

can be partially mitigated using latent target decoding and implicit feature modifica-

tion.

Main Findings. We have conducted experiments on two distinct VL models, CLIP and

VSE++, and have evaluated the performance on Flickr30k and MS-COCO. We have

found that when training with unique shortcuts, CLIP suppresses pre-trained features

in favor of the shortcuts. VSE++ only learns to represent the shortcuts, when using

unique shortcuts, showing that none of the remaining task-relevant (both shared and

unique) information is captured by the encoders when training a model from scratch.

When using n bits of shortcuts, we have shown that the more bits we use, the more

the contrastive VL models rely on the synthetic shortcuts. Our results demonstrate

that contrastive VL methods tend to depend on easy-to-learn discriminatory features

shared among images and all matching captions while suppressing the remaining task-

relevant information. Next, we have evaluated two methods for reducing shortcut

learning on our framework of synthetic shortcuts for image-caption datasets. Both
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methods partially mitigate shortcut learning when training and evaluating with our

shortcut learning framework. These findings show that our framework is a challenging

framework to study and evaluate shortcut learning for contrastive VL and underline

the complexity of our framework in studying and evaluating shortcut learning within

the context of contrastive VL representation learning.

Implications. The implications of our findings are twofold. First, we examine the lim-

itations of contrastive optimization objectives for VL representation learning, demon-

strating that they predominantly capture features that are easily discriminable but may

not necessarily constitute task-optimal representations. Second, our work contributes

a novel framework for investigating shortcut learning problem in the context of VL

representation learning with multiple captions per image, providing insights into the

extent to which models rely on shortcuts when they are available and how existing

shortcut reduction methods are capable of reducing shortcut learning when training

with our framework.

Limitations. Some of the limitations of our work are related to the fact that we focused

on two specific models, one optimization objective (InfoNCE), and two datasets, and

the generalizability of our findings to other VL models, optimization objectives, and

datasets warrants further exploration. Additionally, the synthetic shortcuts introduced

in this chapter are not dependent on image-caption pairs. Our training and evaluation

setup shows that, in the presence of shortcuts in the training data, contrastive VL

models mainly rely on the easy-to-detect shortcut features, which indicates that the

InfoNCE loss cannot learn tasks-optimal representations for VL tasks when multiple

captions are used for training. However, it remains unclear to what degree the unique

information of the captions is captured by the contrastive loss VL models.

Future Work. We suggest working on the development of optimization objectives that

specifically address the shortcut learning problem for VL training with multiple cap-

tions per image. Moreover, we suggest extending our synthetic shortcuts for image-

caption datasets to a framework with unique shortcut information per caption. By

having unique shortcut information per caption, it becomes possible to measure how

much of the shared/caption-specific shortcut information is captured by the encoder

models. Another direction for future research includes investigating alternative train-

ing strategies or loss functions to further mitigate shortcut learning problems. Another

promising direction for future work includes the improvement of existing methods or

the exploration of novel techniques that address the limitations of existing shortcut re-

duction methods, potentially through the combination of multiple approaches. Finally,

extending the SVL framework to better capture nuances and complexities of natural

data is another important and promising direction. This would allow a more compre-

hensive exploration of shortcut learning and the understanding of the implications in
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real-world scenarios and datasets.

Answer to RQ3. Hence, our findings indicate that in vision-language representation

learning with multiple captions per image, the presence of shortcuts hinders the learn-

ing of task-optimal representations. We assume that this happens because contrastive

learning approaches prioritize easily detectable features shared between the image

and all captions, neglecting unique information specific to individual captions. This

dependence on shortcuts prevents models from capturing the full spectrum of relevant

information within the image and its captions, resulting in suboptimal representations.

4.9 broader impact

This chapter motivates and introduces a framework for investigating the problem of

shortcut learning for contrastive VL representation learning with multiple captions

per image in a controlled way. It also examines how two shortcut learning reduction

methods perform on the proposed framework. Overall, the framework provides a tool

for analyzing and understanding the problem of shortcut learning in the context of

contrastive VL representation learning; it can be used in various settings that require

deeper insight into the quality of learned VL representations.

We should be aware that the reliance on shortcuts in VLMs poses ethical concerns

with potential real-world implications. Models that learn shortcuts may overlook nu-

anced details in images and text, leading to biased or inaccurate outcomes. Further-

more, transparency and explainability of VLMs are crucial considerations. Models

that rely on shortcuts may make decisions based on features that are not easily inter-

pretable or explainable to users. This lack of transparency can diminish trust in AI

systems.
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4.A notation

Symbol Description

LInfoNCE InfoNCE loss

LInfoNCE+LTD Loss that combines InfoNCE and latent target decoding (LTD)

LInfoNCE+IFM Loss that combines InfoNCE and implicit feature modification (IFM)

Lrecon Reconstruction loss

D
Dataset D that comprises N image-caption tuples: D =

{(
xi
I , {xi

Cj
}k

j=1

)}N

i=1
;

i-th image-caption tuple in the dataset D consist out of an image xi
I

and k associated captions {xi
Cj
}k

j=1

B Batch of image-caption pairs

zI Latent representation of image xI

zC Latent representation of caption xC

zSUF
C→I Latent representation of the caption xC that is sufficient for the image xI

zSUF
I→C Latent representation of the image xI sufficient for the caption xC

zMIN
I→C Latent representation of the image xI that is minimal sufficient for the caption xC

zOPT
I→K

Latent representation of the image xI that is optimal for the set of captions K
given the task T

fθ(·)
Image encoder parametrised by θ; takes image xI as input and returns
its latent representation zI : zI := fθ(xI )

gϕ(·)
Caption encoder parametrised by ϕ; takes caption xC as input and returns
its latent representation zC : zC := gϕ(zC)

τ Temperature paramater of LInfoNCE

ϵ Perturbation budget for LIFM

η Reconstruction bound for LLTD

Table 4.A.1: Overview of notation used in the chapter.
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4.B problem definition and assumptions

In this chapter, we solely focus on contrastive VL representation learning. We work

in a setting where we investigate the problem by fine-tuning a large pre-trained foun-

dation model (CLIP, Radford et al., 2021) and training a resource-constrained image-

text method from scratch (VSE++, Faghri et al., 2018). We train and evaluate using

two benchmark datasets where multiple captions per image are available: Flickr30k

(Young et al., 2014) and MS-COCO Captions (Lin et al., 2014). Both datasets come

with 5 captions per image. We work in a dual-encoder setup, i.e., we have a separate

image and caption encoder, which do not share parameters.

4.b.1 Evaluation Task

The image-caption retrieval (ICR) evaluation task consists of two sub-tasks: image-to-

text (i2t) and text-to-image (t2i) retrieval. In ICR, either an image or a caption is used

as a query and the goal is to rank a set of candidates in the other modality. In this

chapter, we follow the standard ICR evaluation procedure (see, e.g., Faghri et al., 2018;

Lee et al., 2018; Li et al., 2019a). The evaluation metric for the ICR task is Recall@k,

with k = {1, 5, 10}. For t2i retrieval, there is one matching/positive image per query

caption (when using the Flickr30k or MS-COCO or dataset). Hence, the Recall@k
metric represents how often the correct image is present in the top-k of the ranking.

For i2t retrieval, however, there are 5 matching captions per image. Therefore, only the

highest-ranked correct caption is taken into account when measuring the Recall@k (i.e.,

in the highest-ranked caption present in the top k). Standard practice to select the best

model checkpoint during training is to use the recall sum (rsum) as a validation metric.

The recall sum is the sum of recall at 1, 5, and 10, for both i2t and t2i. Therefore, the

maximum value of the recall sum is 600.

4.b.2 Assumptions

Throughout this chapter, we rely on several assumptions about the problem definition.

Our assumptions are defined at the level of an image-text tuple. Following Section 4.2,

we formalize the assumptions on the case where one image is associated with two

captions:
(

xI , {xCA
, xCB
}
)

.
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Assumption 1. Each caption in the tuple contains information that is distinct from the other
captions in the tuple and all captions and image in the tuple contain shared and unique infor-
mation:

I(xI ; xCA
; xCB

) > 0

I(xI ; xCA
| xCB

) > 0, I(xI ; xCB
| xCA

) > 0 and I(xCA
; xCB

| xI ) > 0

H(xI | xCA
, xCB

) > 0, H(xCA
| xI , xCB

) > 0 and H(xCB
| xI , xCA

) > 0.

Assumption 2. Task-relevant information R is the combination of all the information shared
between an image and each caption in the tuple:

R = I(xI ; xCA
| xCB

) + I(xI ; xCB
| xCA

) + I(xI ; xCA
; xCB

).

4.C analysis of contrastive learning for multiple cap-
tions per image

Theorem 1 (Suboptimality of contrastive learning with multiple captions per image).

Given an image xI , a set of matching captions C = {xCA
, xCB
}, and a contrastive learning loss

function LInfoNCE that optimizes for task T, image representations learned during contrastive
learning will be minimal sufficient and will never be task-optimal image representations. More
formally, assume that:

(H1) ∀i, j ∈ {A, B} such that i ̸= j, I(zMIN
I→Ci

; xCi
) = I(xI ; xCi

| xCj
) + I(xI ; xCi

; xCj
).

(H2) ∃i, j ∈ {A, B} with i ̸= j such that I(xI ; xCi
| xCj

) > 0.

Then the following holds:

(T2) ∃ i ∈ {A, B} such that I(zOPT
I→C ; xCA

xCB
) > I(zMIN

I→Ci
; xCi

).

Proof. Following Eq. 4.1 we define a task-optimal representation of an image xI w.r.t.

all matching captions in C as:

I(zOPT
I→C ; xCA

xCB
) = I(xI ; xCA

| xCB
)︸ ︷︷ ︸

CA

+ I(xI ; xCB
| xCA

)︸ ︷︷ ︸
CB

+ I(xI ; xCA
; xCB

)︸ ︷︷ ︸
S

.

Furthermore, following Definition 5, we define minimal sufficient representations

of image xI w.r.t. each matching caption in C as a combination of caption-specific and

shared information:

I(zMIN
I→CA

; xCA
) = I(xI ; xCA

| xCB
)︸ ︷︷ ︸

CA

+ I(xI ; xCA
; xCB

)︸ ︷︷ ︸
S
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I(zMIN
I→CB

; xCB
) = I(xI ; xCB

| xCA
)︸ ︷︷ ︸

CB

+ I(xI ; xCA
; xCB

)︸ ︷︷ ︸
S

.

Following assumption H2, for at least one caption xC ∈ C associated with the image

xI , caption-specific information is positive. Therefore, we consider two cases:

• If caption-specific information of xCA
is positive, that is, if I(xI ; xCA

| xCB
) > 0:

I(xI ; xCA
| xCB

) + I(xI ; xCB
| xCA

) + I(xI ; xCA
; xCB

)︸ ︷︷ ︸
(zOPT
I→C ; xCA

xCB
)

> I(xI ; xCB
| xCA

) + I(xI ; xCA
; xCB

)︸ ︷︷ ︸
I(zMIN
I→CB

; xCB
)

⇒

⇒ I(zOPT
I→C ; xCA

xCB
) > I(zMIN

I→CB
; xCB

).

• Similarly, if caption-specific information of xCB
is positive, i.e., if I(xI ; xCB

|
xCA

) > 0:

I(xI ; xCA
| xCB

) + I(xI ; xCB
| xCA

) + I(xI ; xCA
; xCB

)︸ ︷︷ ︸
(zOPT
I→C ; xCA

xCB
)

> I(xI ; xCA
| xCB

) + I(xI ; xCA
; xCB

)︸ ︷︷ ︸
I(zMIN
I→CA

; xCA
)

⇒

⇒ I(zOPT
I→C ; xCA

xCB
) > I(zMIN

I→CA
; xCA

).

Therefore, we show that in a setup where a single image is associated with multiple

captions, and where at least one caption contains caption-specific information, image

representations learned contrastively w.r.t. associated captions contain less informa-

tion than task-optimal image representation: ∃ i ∈ {A, B} such that I(zOPT
I→C ; xCA

xCB
) >

I(zMIN
I→Ci

; xCi
).

4.D experimental setup

4.d.1 Datasets

Flickr30k consists of 31,000 images annotated with 5 matching captions (Young et al.,

2014).

MS-COCO consists of 123,287 images, each image annotated with 5 matching cap-

tions (Lin et al., 2014). The original dataset was introduced for large-scale object recog-

nition.

For both datasets, we use the training, validation, and test splits from (Karpathy

and Li, 2015).
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4.d.2 Models

We use CLIP and VSE++. Both consist of an image and a text encoder that do not

share parameters.

CLIP is a large-scale image-text foundation model (Radford et al., 2021). The model

is pre-trained on a collection of 400 million image-text pairs collected from the Web.

The encoders are pre-trained using a contrastive loss (InfoNCE) on image-text pairs.

The text encoder of consists of a 12-layer transformer model, described in (Radford

et al., 2019). As for the image encoder, CLIP utilizes various model backbones, such

as ResNet (He et al., 2016) and Vision Transformer (Dosovitskiy et al., 2021). In this

chapter, we use the ResNet-50 (‘RN50’) variant of the CLIP image encoder.1 The CLIP

encoders are trained to jointly understand images and text. Therefore, the learned rep-

resentations generalize to a wide range of different zero-shot (visual) evaluation tasks,

such as classification, without task-specific fine-tuning, by using textual prompts.

VSE++ is an image-caption encoder trained from scratch (Faghri et al., 2018). The

model features a triplet loss function with a margin parameter α = 0.2. The text

encoder is a one-layer gated recurrent unit (GRU) (Cho et al., 2014). The available

image encoder configurations are ResNet-152 (He et al., 2016) and VGG19 (Simonyan

and Zisserman, 2015). In this chapter, we use ResNet-152.

4.d.3 Training

CLIP. To fine-tune CLIP, we follow (Yuksekgonul et al., 2023). All models are fine-

tuned for 5 epochs. We employ a cosine-annealing learning rate schedule, with a

base learning rate of 2e − 5, and 100 steps of warm-up. As an optimizer, we use

AdamW (Loshchilov and Hutter, 2019) with a gradient clipping value of 2. For the

InfoNCE loss, we use the logit-scale (i.e., temperature τ) from the pre-trained CLIP

model and fine-tune the logit-scale end-to-end along with the rest of the model pa-

rameters.

VSE++. The model is trained for 30 epochs using a linear learning rate schedule with

a base learning rate of 2e− 4. We use the Adam optimizer (Kingma and Ba, 2015) with

a gradient clipping value of 2. Instead of the triplet loss, we use the InfoNCE loss

similar to (Radford et al., 2021),

For both models, instead of selecting the best-performing model based on the vali-

dation set scores, we use the final checkpoint at the end of training.

1 https://github.com/openai/CLIP/
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4.d.4 Shortcut Sampling

Our goal is to add the shortcuts in a manner that preserves the original information

of the images and captions. For the captions, we append the shortcut at the end of

the captions. In order to prevent a tokenizer from tokenizing the shortcut into a single

token, we insert spaces between each number of the shortcut. For the images, we place

the numbers of the shortcuts at the top of the images, evenly spaced across the entire

width of the images (to make sure the shortcut is evenly spaced across the feature map

of the image). We always use 6 digits to represent a shortcut. If a shortcut number

contains fewer than 6 digits, we fill the remaining positions with zeros for padding.

For the MNIST images, we always sample a random image from the set of images

representing the number that belongs to (also during evaluation), to prevent overfitting

on specific MNIST images. In Figure 4.D.1, we provide four examples of image-caption

pairs with randomly added shortcuts. The examples in Figure 4.D.1 show (i) how

synthetic shortcuts are added to the image and the caption, and (ii) that the shortcuts

preserve the original (task-relevant) information of the images and captions.

4.E optimization objectives

4.e.1 InfoNCE

In this chapter, we use InfoNCE loss, LInfoNCE (Oord et al., 2018). Given a dual-encoder

setup, we optimize a model in two directions: image-to-text (i2t) and text-to-image

(t2i). The loss is defined as follows:

LInfoNCEi2t =
1
|B| ∑i∈B

log
exp(zi

Izi
C/τ)

exp(zi
Izi
C/τ) + ∑j ̸=i exp(zi

Izj
C/τ)

LInfoNCEt2i =
1
|B| ∑i∈B

log
exp(zi

Izi
C/τ)

exp(zi
Izi
C/τ) + ∑j ̸=i exp(zj

Izi
C/τ)

LInfoNCE =
1
2
LInfoNCEi2t +

1
2
LInfoNCEt2i.

4.e.2 Latent Target Decoding

Latent target decoding (LTD) (Bleeker et al., 2022) is an optimization objective that re-

duces predictive feature suppression for resource-constrained VL methods. LTD con-

sists of LInfoNCE and a reconstruction loss Lrecon, which reconstructs the input caption

from the latent representation zC .
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(a) Caption: “A bathroom sink with wood finish
cabinets. 0 3 9 9 6 5.”

(b) Caption: “A guy in a brown shirt has just hit
a tennis ball. 0 7 7 1 1 4.”

(c) Caption: “A man in shorts is lying on the
beach. 0 0 6 9 9 3.”

(d) Caption: “A player up to bat in a baseball
game. 1 0 1 9 9 2.”

Figure 4.D.1: Four random samples from the MS-COCO dataset including shortcuts added on
both the image and caption.

In the original paper, LTD is implemented in two ways. Firstly, as a dual optimiza-

tion objective:

LInfoNCE+LTD = LInfoNCE + βLrecon.

Secondly, as an optimization constraint in combination with gradient descent by using

the method of Lagrange multipliers:

max
λ

minLInfoNCE+LTD = LInfoNCE + λ

(Lrecon

η
− 1

)
.
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This optimization objective is minimized w.r.t. model parameter, while also being

maximized w.r.t. λ. The value of λ is automatically tuned by gradient ascent, such

that the reconstruction bound η is met. In this chapter, we use both LTD as a dual

optimization objective and an optimization constraint. We select the loss with the

highest evaluation scores on the validation set for evaluation.

4.e.3 Implicit Feature Modification

Implicit feature modification (IFM) (Robinson et al., 2021) is a contrastive loss, with an

additional perturbation budget ϵ. IFM perturbs the logits value of the similarity scores

between the images and captions, such that the model avoids using shortcut solutions

for a correct similarity score. IFM subtracts ϵ/τ from the positive logit values and

adds ϵ/τ to the negative logits values.

Lt2i
IFM =

1
|B| ∑i∈B

log
exp((zi

Izi
C − ϵ)/τ)

exp((zi
Izi
C − ϵ)/τ) + ∑j ̸=i exp((zj

Izi
C + ϵ)/τ)

Li2t
IFM =

1
|B| ∑i∈B

log
exp((zi

Izi
C − ϵ)/τ)

exp((zi
Izi
C − ϵ)/τ) + ∑j ̸=i exp((zj

Izi
C + ϵ)/τ)

LIFM =
1
2
Lt2i

IFM +
1
2
Li2t

IFM

LInfoNCE+IFM =
1
2
LIFM +

1
2
LInfoNCE.

Similar to (Robinson et al., 2021), we combine IFM and the InfoNCE in a dual opti-

mization objective.

reproducibility

To ensure the reproducibility of the findings presented in this chapter, we have made

our code publicly accessible at https://github.com/MauritsBleeker/svl-framewo

rk.
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A S S E S S I N G B R I T T L E N E S S O F

I M A G E -T E X T R E T R I E VA L
B E N C H M A R K S

We continue our investigation by focusing on the topic of evaluating vision-language

models (VLMs) in the context of image-text retrieval (ITR) task. Current evaluation

methodologies, often rely on coarse-grained datasets where textual descriptions lack

the necessary level of detail. This limitation restricts our ability to fully capture the

fine-grained relationships between images and text, potentially leading to an under-

estimation of model brittleness. In other words, models might perform well on cur-

rent benchmarks but struggle with real-world scenarios where concept granularity is

higher.

Motivated by this problem, in this chapter, we address the following research ques-

tion:

RQ4: How can we improve the evaluation and benchmarking of vision-language mod-

els on the image-text retrieval task?

To address this question, we examine the concept of granularity within existing

ITR benchmarks and compare them with fine-grained alternatives. We then introduce

a novel evaluation framework that incorporates perturbations and a new evaluation

metric aimed at capturing semantic similarity and cross-modal relationships. We se-

lect four state-of-the-art (SOTA) VLMs and assess their performance using this frame-

work, focusing on robustness to perturbations across both coarse and fine-grained

datasets. This chapter contributes to our understanding of how concept granularity

affects model performance in the ITR task and suggests potential improvements for

evaluation and benchmarking processes.

This chapter is based on the paper “Assessing Brittleness of Image-Text Retrieval Benchmarks from
Vision-Language Models Perspective” (Hendriksen et al., 2024).
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5.1 introduction

Image-text retrieval (ITR) is a bidirectional retrieval task focused on retrieving top-

k images or textual captions based on queries in the other modality (Baltrusaitis et

al., 2019). This task enhances the connection between visual and textual information,

leading to richer and more relevant search results (Cao et al., 2022a). VLMs have

achieved state-of-the-art performance in this area (Li et al., 2021a; Chen et al., 2023c;

Radford et al., 2021; Xu et al., 2022).

The development of ITR has been significantly supported by open benchmarks, with

MS-COCO (Lin et al., 2014; Chen et al., 2015) and Flickr30k (Young et al., 2014) serv-

ing as essential evaluation tools. However, we argue that the datasets and evaluation

methods for assessing state-of-the-art models require revision due to two key limita-

tions.

Coarse vs. fine-grained datasets. We first focus on the concept granularity of ITR

datasets. Here, granularity pertains to the specificity of the relationship between im-

ages and their textual descriptions (Chen et al., 2023b; Goei et al., 2021; Laenen

et al., 2018). Fine-grained datasets provide detailed captions, while coarse-grained

datasets offer general descriptions. We contend that key benchmarks like MS-COCO

and Flickr30k utilize coarse-grained captions, making it difficult to evaluate models’

abilities to identify specific objects or attributes. Some recent work has addressed

this by introducing fine-grained dataset augmentations, such as MS-COCO-FG and

Flickr30k-FG, which incorporate additional contextual details from images (Chen et

al., 2023b).

Robustness. We also examine concept granularity through the lens of model robust-
ness. Robustness is vital for VLMs in ITR tasks due to the noise and variability present

in real-world data. Common issues include semantic shifts and typographical errors

all of which can degrade model performance. Recent research highlights the impor-

tance of developing systems that generalize well to out-of-distribution data and resist

adversarial attacks (Liu et al., 2024a; Liu et al., 2023; Liu et al., 2024b; Lupart and Clin-

chant, 2023; Parry et al., 2024; Penha et al., 2022). Furthermore, existing ITR evaluation

metrics often rely on binary matches between images and texts, ignoring real-world

scenarios where there may be partial semantic overlaps (Messina et al., 2021; Wang

et al., 2020; Zhong et al., 2020). Effective evaluation metrics should account for cross-

modal relationships to better capture the real-world complexities.

We hypothesize that these limitations contribute to the brittleness of today’s ITR eval-

uation pipeline. To investigate this, we take a two-step approach. First, we assess

the granularity of standard ITR benchmarks, MS-COCO and Flickr30k, and their fine-

grained counterparts, MS-COCO-FG and Flickr30k-FG. By analyzing features that cap-
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ture concept granularity, we can determine how varying levels of descriptive detail

influence the performance of VLMs on the ITR task. Second, we extend this analysis

to test the robustness of the VLMs using a novel evaluation framework. This frame-

work introduces input perturbations that allow us to test VLMs’ sensitivity to word

order, redundant information, and lexical variation. We also introduce a cross-modal

evaluation metric that extends beyond the traditional binary matching approach to

assess the semantic similarities between images and texts. We apply this framework to

evaluate the performance of a diverse set of state-of-the-art VLMs – ALIGN (Jia et al.,

2021), AltCLIP (Chen et al., 2023c), CLIP (Radford et al., 2021), and GroupViT (Xu

et al., 2022). While all models are two-tower architectures trained contrastively, they

differ in focus (details are provided in Section 7.4).

In this chapter, we answer the following research questions:

RQ4.1 How does concept granularity – both in textual descriptions and overall dataset

composition – impact the performance of VLMs on the ITR task?

RQ4.2 How is the performance of state-of-the-art VLMs (ALIGN, AltCLIP, CLIP, and

GroupViT) on the coarse-grained vs. fine-grained datasets impacted by pertur-

bations, particularly in terms of their sensitivity to word order and robustness

to variability of user input?

The principal contributions of our research are the following:

(i) We evaluate the impact of dataset granularity on the performance of vision-

language models in ITR using standard benchmarks, MS-COCO and Flickr30k,

and their fine-grained counterparts, MS-COCO-FG and Flickr30k-FG.

(ii) We propose a novel evaluation suite for VLMs on the ITR task, which focuses

on the model’s compositional understanding and robustness in the context of

concept granularity, and features a cross-modal evaluation metric.

(iii) We evaluate ALIGN, AltCLIP, CLIP, and GroupViT using the proposed frame-

work and find that caption augmentation improves model robustness to per-

turbations when evaluated on the ITR tasks. Notably, we observed the most

substantial decline in model sensitivity to word order, contrasting with previous

findings in the domain. This highlights the necessity for more benchmarks that

capture both coarse and fine-grained semantic relationships between images and

text.
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5.2 preliminaries

Notation. We follow notation from prior work (Bleeker et al., 2024; Brown et al., 2020).

Let D be a dataset of N image-text tuples: D = {(xi
I , {xi

Cj
}k

j=1)}N
i=1. Each tuple i ∈ N

consists of a single image xi
I and k corresponding texts (captions) xi

Cj
, where 1 ≤ j ≤ k.

All texts are considered relevant to the image xi
I . We derive sets of queries Q and

candidates C from the dataset D. Let QT represent the set of text queries, where

QT ⊆ Q. Let QI represent the set of image queries, where QI ⊆ Q. Similarly, CT ⊆ C
and QI ⊆ Q represent the sets of text and image candidates respectively. Let q ∈ Q
and c ∈ C represent a query and a candidate item respectively.

A query q may originate from either the text modality q ∈ QT or the image modality

q ∈ QI , while a candidate c may similarly originate from either the text modality

c ∈ CT or the image modality c ∈ CI . Let Eθ1 : Q → Rd be the encoder function

mapping textual queries q ∈ QT to d-dimensional vectors: q = Eθ1(q). Similarly,

we write Eθ2 : C → Rd for the encoder function mapping image queries c ∈ CI to

d-dimensional vectors: c = Eθ2(c).
Let frel : Q × C → R be a relevance function that computes the relevance of a

query-candidate pair. We write fS : Q× C → R for a scoring function that takes a

query and a candidate, maps them into d-dimensional space, normalizes the vectors

so that they lie on d-dimensional hypersphere and computes their similarity. Finally,

fsim : Rd × Rd → R denotes a similarity function that computes a similarity score

between the two d-dimensional vectors. We assume that all vectors lie on the surface

of a d-dimensional hypersphere. Formally, this implies that ∥q∥ = ∥c∥ = 1 where ∥ · ∥
denotes the Euclidean norm.

Task. We focus on the task of cross-modal retrieval, which involves matching queries in

one modality (e.g., text or image) to candidates in a different modality.

The retrieval process can occur in two ways: (i) text-to-image retrieval (t2i): given

a textual query q ∈ QT and a set of candidate images CI , rank the images by their

relevance to q; (ii) image-to-text retrieval (i2t): given an image query q ∈ QI and a set

of text candidates CT , rank the texts by their relevance to q. For both tasks, dedicated

encoders are used to map images and texts into a shared d-dimensional representation

space. Once encoded, we compute the similarity between the query and candidate in

this shared space to derive relevance scores.

Performance is typically evaluated using Recall@k (R@k), where k = {1, 5, 10}, and

the sum of recall (rsum).
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(Synonym Noun) A seaplane is floating in front of the London Bridge.

(Synonym Adjective) An amphibious aircraft is floating in front of the London Bridge.

(Distraction True is True) An amphibious plane is floating in front of the London Bridge 
and true is true.

(Distraction False is False) An amphibious plane is floating in front of the London 
Bridge and false is false.

(Original caption) An amphibious 
plane is floating in front of the 
London Bridge.

(Character Swap) An amphibious plane is floating in front 
of the Lnodon Bridge.

(Missing Character) An amphibious plane is floatng in front 
of the London Bridge.

(Shuffle Nouns and Adjectives) An London amphibious plane is floating in front of the 
bridge.

(Shuffle All Words) Floating amphibious front is plane an bridge the London of in.

(Shuffle All Words but Nouns and Adjectives) An amphibious plane is front in floating of 
the London Bridge.

(Shuffle within Trigrams) Amphibious an plane front is in the London floating bridge.

(Extra Character) An amphibious plane is floatingg in front 
of the London Bridge.

(Nearby character) An amphibious plane is floathing in 
front of the London Bridge.

Figure 5.1: Overview of selected perturbations with examples.

5.3 concept granularity in image-text retrieval datasets

In this section, we outline the features for analyzing the granularity of concepts in ITR

datasets. We will also describe the datasets selected for evaluation and perform an

analysis based on the provided definition of granularity.

5.3.1 Granularity Features in Image-Text Retrieval

We focus on features that contribute to defining the granularity of ITR datasets, focus-

ing on noun phrase (NP) and caption-level characteristics.

NP-level granularity. This section discusses linguistic features contributing to NP

granularity in captions.

Modifiers of the noun. Adjectives and complement phrases (CPs) provide details about

objects in images (Pesahov et al., 2023; Zhao et al., 2022). By quantifying these mod-

ifiers, we assess the detail and granularity associated with objects (Li et al., 2022d).

Specifically, we count the number of adjectives and CPs per identified noun in cap-

tions.

Semantics: Concept depth. Concept depth reflects the semantic understanding captured

within individual concepts in captions, indicating a deeper comprehension of the de-

picted scene (Xu et al., 2023). Datasets with deeper conceptual information offer more

detailed descriptions of visual content (Piasecki et al., 2009). We measure concept

depth by calculating the minimum depth of the corresponding synsets, considering

the maximum depth across all synsets associated with a word.

Determiners: Articles, quantifiers. The use of articles and quantifiers impacts the speci-

ficity of noun descriptions (Jurafsky and Martin, 2009). Analyzing their occurrences

offers insights into the explicitness and precision of noun specifications. We quantify

the occurrences of articles and quantifiers linked to identified nouns in captions.
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Table 5.1: Granularity vs. Coarseness in ITR Datasets.

Level Features MS-COCO MS-COCO-FG Flickr30k Flickr30k-FG

N
P

Adjectives 0.76 1.05 1.14 1.3

CPs 1.56 1.99 1.81 2.19

Articles 2.14 2.34 2.27 2.55

Quantifiers 0.12 0.13 0.26 0.27

Concept Depth 7.89 7.91 7.97 7.97

C
ap

ti
on Caption Length 52.39 56.38 63.61 68.29

Words per Caption 10.59 11.48 12.34 13.67

Concept Diversity 9.14 10.04 9.86 10.68

Caption-level granularity. Next, we consider caption-level features.

Caption length. The character count of a caption indicates the amount of information

conveyed (Lewis and Frank, 2016). Longer captions are likely to include more details,

contributing to finer granularity. We measure the total word count for each caption.

Number of words. The total word count is indicative of caption richness (Lewis and

Frank, 2016). A higher word count suggests a more elaborate description, signaling

finer granularity. We count the total number of words in each caption.

Semantic diversity of concepts per caption. Concept diversity is essential for analyzing

granularity within ITR datasets (Jurafsky and Martin, 2009). It reflects the range of

ideas and semantic complexity captured in a caption. We compute the ratio of unique

synonyms to the total word count in each caption.

5.3.2 Granularity Analysis

Next, we analyze the selected datasets in terms of granularity versus coarseness, with

a focus on various linguistic aspects at both the NP and caption levels.

Datasets

In this chapter, we use the following datasets:

(i) MS-COCO (Lin et al., 2014), a large-scale object detection, segmentation, and

captioning dataset that consists of 123,287 images and 616,435 captions; each

image is annotated with 5 captions.

(ii) Flickr30k (Young et al., 2014), an image caption corpus consisting of 158,915

crowd-sourced captions describing 31,783 images; each image is annotated with

5 captions.
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(iii) MS-COCO-FG and Flickr30k-FG (Chen et al., 2023b), augmentation of Flickr30k

and MS-COCO, respectively, with captions that contain additional contextual

details extracted from the associated images.

For all datasets, we use the training, validation, and test splits from (Karpathy and Li,

2015).

Table 5.1 presents the results of analyzing our datasets in terms of granularity.

For Flickr30k vs. Flickr30k-FG, we observe a 21% increase in the number of concept

phrases in the extended dataset. This indicates a richer description of scenes with addi-

tional details. The concept depth remains unchanged. While the fine-grained dataset

offers more detailed descriptions, the semantic complexity of the concepts remains

largely unchanged. Similarly, we note a 38% increase in the number of adjectives

per caption in MS-COCO-FG over MS-COCO. This suggests a more descriptive and

nuanced portrayal of visual content. The concept depth exhibits only a marginal in-

crease, implying that the semantic understanding of concepts is slightly enhanced in

the fine-grained version. Overall, the fine-grained datasets demonstrate higher scores

across features than their standard counterparts. Thus, they offer more detailed and

descriptive captions, amounting to improved granularity.

5.4 evaluation framework

5.4.1 Perturbations

We introduce several perturbations to evaluate the robustness and performance of

VLMs in the context of ITR. These perturbations focus on word order sensitivity and

robustness to noise in input. We draw inspiration from prior work that highlights the

limitations of large language models in processing word order (Hessel and Schofield,

2021; O’Connor and Andreas, 2021; Pham et al., 2021; Yuksekgonul et al., 2023) and

handling noisy input (Thomas and Kovashka, 2020; Jin et al., 2020; Fan et al., 2021;

Zhuang and Zuccon, 2022; Wang et al., 2022c).

Word-level Perturbations

Word-level perturbations are applied at the level of individual words within a caption.

The focus is on investigating the model’s robustness to typos and synonyms. The

perturbations types include:

Typos. Typos are common in real-world scenarios, and evaluating a model’s re-

sponse to such errors is crucial for ensuring its practical usability in information re-

trieval (IR) (Sidiropoulos and Kanoulas, 2022; Zhuang and Zuccon, 2022) and on the
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image-caption retrieval (ICR) task in particular (Wang et al., 2022c). This perturbation

assesses the model’s ability to handle input variations introduced by typographical

mistakes, providing insights into its robustness in retrieving images given textual de-

scriptions. Typos perturbations aim to assess the model’s resilience to typographical

errors. This type has been previously tested on sentiment analysis, duplicate question

detection, and natural language inference (Wang et al., 2021a; Li et al., 2018). How-

ever, it has not been applied in the context of evaluating VLMs on the ITR task. The

subtypes are as follows.

• Character Swap: Swaps two random adjacent word characters in a caption, simu-

lating the introduction of a typo through character transposition. This perturbation

allows us to evaluate the model’s ability to recognize and correct character-level

errors.

• Missing Character: Removes a randomly selected character from the input text,

mimicking the effect of a typo where a character is omitted. This perturbation tests

the model’s robustness in understanding and completing partial textual informa-

tion.

• Extra Character: Adds an extra random character to the input text, simulating the

insertion of a typo. This perturbation assesses the model’s ability to handle addi-

tional characters and maintain accurate image-caption associations despite minor

textual variations.

• Nearby Character: Replaces a character in the input text with a nearby character

on the keyboard, emulating the introduction of a typo due to the proximity of keys.

This perturbation explores the model’s sensitivity to keyboard-related errors.

Synonyms

Synonym-based perturbations aim to assess the model’s adaptability and robustness

to variations in language, specifically focusing on the substitution of nouns and ad-

jectives with their synonyms. This perturbation type is motivated by the need to

evaluate VLMs capacity to comprehend and retrieve images and captions when faced

with lexical variations that convey similar meanings (Jin et al., 2020; Fan et al., 2021).

Specifically, we focus on testing the models’ capacity to retrieve the right image using

semantically similar nouns and adjectives. The subtypes are as follows.

• Synonym Noun: This perturbation involves replacing k nouns in a given caption

with their synonyms. The motivation behind this perturbation is to examine how

well the model handles variations in nouns, which is important for accurate and

descriptive image-caption associations.
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• Synonym Adjective: This perturbation implies replacing k adjectives in a given cap-

tion with their synonyms. Adjectives play a vital role in expressing characteristics

and qualities associated with visual elements in an image. Introducing synonym

substitutions in adjectives aims to assess the model’s proficiency in maintaining the

descriptive quality of captions when faced with lexical variations.

Sentence-level Perturbations

Sentence-level perturbations are applied at the level of sentences in a caption. The

focus is on evaluating the model’s resilience to distracting elements, compositionality-

related challenges, and sensitivity to word order.

Distraction-Based Perturbations. Distraction-based perturbations aim to evaluate the

model’s robustness to distracting elements within captions. Specifically, we focus on

the statements that are always true and do not add any meaningful content to the

caption. The motivation is to understand how well the model can filter out relevant

information from distractors, a critical skill for accurate image-caption retrieval in the

presence of additional context (Thomas and Kovashka, 2020).

• Distraction True is True: This subtype appends to caption distracting statement

“true is true.” It evaluates the model’s handling of additional distracting information

that is semantically coherent but not directly related to the original content.

• Distraction False is False: This subtype appends to caption distracting statement

“false is false,” assessing the model’s resilience to distracting information.

Compositionality-Related Perturbations

Compositionality-related perturbations assess the model’s ability in the context of com-

positionality (Partee, 1995; Yuksekgonul et al., 2023), focusing on its sensitivity to word

order changes within sentences.

Sensitivity to Word Order. This category of perturbations tests the model’s sensitivity

to word order changes within sentences.

• Shuffle Nouns and Adjectives: This subtype involves shuffling the order of nouns

and adjectives within the input sentence. The motivation is to examine how well

the model can handle changes in the arrangement of descriptive elements, crucial

for capturing the visual details of an image accurately.

• Shuffle All Words: Randomly shuffling the order of all words in the input sentence

to assess the model’s general flexibility in understanding and generating coherent

captions despite drastic changes in word order. This perturbation aims to reveal the

model’s adaptability to varied sentence structures.
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• Shuffle All Words But Nouns and Adjectives: Shuffling all words except for nouns

and adjectives tests the model’s ability to maintain the key descriptive elements

in their original positions, examining its proficiency in preserving the essential de-

tails while undergoing significant rearrangement. In practice, it implies keeping the

nouns and adjectives in fixed positions and randomly shuffling all the other words.

• Shuffle within Trigrams: Dividing the input sentence into trigrams and shuffling

the order of words within each trigram evaluates the model’s response to localized

word rearrangements. This perturbation offers insights into the model’s sensitivity

to changes in smaller, contextually relevant segments of the sentence.

• Shuffle Trigrams: Dividing the input sentence into trigrams and shuffling the order

of entire trigrams assesses the model’s ability to comprehend and generate captions

when faced with larger-scale rearrangements. This perturbation provides a broader

perspective on the model’s understanding of sentence composition and structure in

diverse contexts.

5.4.2 Evaluation Metric

The current evaluation framework for ITR faces challenges due to the binary match

assumption, the focus on intra-modality comparisons, and the disregard of cross-

modal relationships across image-caption tuples (Kaur et al., 2021; Carrara et al., 2018;

Messina et al., 2021; Wang et al., 2020; Jiang et al., 2017; Jiang et al., 2017). Such limita-

tions hinder the comprehensive assessment of model performance, failing to capture

the relationships between visual and textual content. To address these shortcomings,

we propose a novel evaluation metric that uses similarity functions to estimate rele-

vance scores across modalities and image-caption tuples. Our goal is to evaluate not

only explicit matches but also the overall relevance between queries and candidates,

even when explicit labels are unavailable. To achieve this, we define a metric based on

both perfect match cases and cross-modal relevance.

We operate in a setup when, given a query q, and a ranked list of top-k retrieved

results K = [c1, . . . , ck], we want to obtain a list of the relevance scores [rel1, . . . , relk]

where reli denotes the relevance for the i-th retrieved candidate.

Perfect Match. When explicit matching labels are available, we assign a relevance

score of 1 to perfect matches. This applies to both text-to-image and image-to-text

retrieval:

(i) Text-to-Image Retrieval (t2i): The retrieved image c ∈ CI is considered a perfect

match if it is the ground-truth image for query q ∈ QT :

frel(q, c) = 1 if ∃i ∈ N such that q ∈ {xi
Cj
}k

j=1 ∧ c = xi
I .
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(ii) Image-to-Text Retrieval (i2t): The retrieved caption c ∈ CT is considered a perfect

match if it is the ground-truth caption for query q ∈ QI :

frel(q, c) = 1 if ∃i ∈ N such that q = xi
I ∧ c ∈ {xi

Cj
}k

j=1.

Cross-Modal Relevance. When explicit labels are unavailable (i.e., no perfect matches

exist), the relevance score is computed based on the similarity between the encoded

query and candidate vectors. This approach allows us to measure how well the model

aligns cross-modal pairs (text and images) in the shared representation space. The

scoring function fS is defined as:

fS(q, c, Eθ1 , Eθ2) =

 fsim(Eθ1(q), Eθ2(c)) if q ∈ QT and c ∈ CI ,

fsim(Eθ2(q), Eθ1(c)) if q ∈ QI and c ∈ CT .
(5.1)

We use cosine similarity as the similarity function: fsim(v1, v2) =
v1·v2
∥v1∥∥v2∥ .

Overall Metric. To evaluate model performance across ranked results, we measure

relevance while considering the rank position of the results:

DCGp
CM =

p

∑
i=1

reli

log2(i + 1)
, (5.2)

where p represents the rank position up to which the score is computed.

5.5 experiments

5.5.1 Models

For our experiments, we select four VLM that demonstrate SOTA performance across

vision-language (VL) tasks, with a specific emphasis on ITR. All selected models are

dual-encoder networks trained using contrastive learning on image-text data; however,

they embody a diverse array of methodologies, thereby ensuring a comprehensive

evaluation.

ALIGN (Li et al., 2021a) is a VLMs that addresses the challenge of costly curation

processes in VL representation learning by leveraging a noisy dataset of over one bil-

lion image alt-text pairs from the Conceptual Captions dataset. Employing a simple

contrastive dual-encoder architecture, ALIGN learns to align visual and language rep-

resentations effectively. The model achieves SOTA results on a variety of VL tasks,

outperforming more complex cross-attention models. The learned representations en-

able zero-shot image classification and support cross-modality search with complex

text and image queries, showcasing the effectiveness and scalability of the ALIGN
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model in large-scale VL tasks.

AltCLIP (Chen et al., 2023c) is a multilingual VLM built upon CLIP (Radford et al.,

2021). It enhances CLIP’s capabilities by incorporating a pre-trained multilingual text

encoder XLMR and employing a two-stage training schema. In the first stage, knowl-

edge distillation from CLIP is conducted through teacher learning, followed by con-

trastive learning in the second stage, where the model is trained on a small set of

Chinese and English text-image pairs. AltCLIP achieves SOTA performances on a

variety of VL tasks. Furthermore, AltCLIP closely matches CLIP’s performance, indi-

cating that simple alterations to CLIP’s text encoder can lead to extended capabilities

in handling multilingual tasks.

CLIP (Radford et al., 2021) is a dual encoder pre-trained on a dataset of 400 million

(image, text) pairs collected from the internet. Its pre-training enables zero-shot trans-

fer to downstream tasks, where natural language references learned visual concepts

or describes new ones. Benchmarked across over 30 diverse computer vision datasets,

including OCR, action recognition, and fine-grained object classification, CLIP demon-

strates remarkable versatility and competitiveness, often matching or surpassing fully

supervised baselines without requiring task-specific training. Similar to the GPT fam-

ily, CLIP exhibits proficiency across a wide range of tasks during pre-training, showcas-

ing its potential as an efficient and effective method for large-scale VL representation

learning and ITR.

GroupViT (Xu et al., 2022) reintroduces the grouping mechanism of grouping seman-

tic regions into deep networks, enabling the automatic emergence of semantic seg-

ments. Trained contrastively on a large-scale paired image-text dataset, GroupViT

learns to group image regions into progressively larger arbitrary-shaped segments.

This hierarchical approach, facilitated by the flexibility of the global self-attention

mechanism in the transformer architecture, allows GroupViT to dynamically form dif-

ferent visual segments for various input images, each representing a distinct semantic

concept.

5.5.2 Experiments Overview

To answer our RQs, we run the following experiments:

Set 1: Coarse vs Fine-Grained Datasets Evaluation across Selected Models (RQ4.1).

In these experiment, we evaluate the impact of concept granularity in both textual

descriptions and dataset composition on VLMs performance in the ITR task. We

validate our evaluation framework by comparing our results to those reported in a

previous study (Chen et al., 2023b). This study is relevant because it critiques current

ITR benchmarks and proposes enhanced evaluations for fine-grained cross-modal se-
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mantic matching. Moreover, Chen et al. (2023b) introduced augmented benchmarks

(MS-COCO-FG and Flickr30K-FG) that we incorporate into our experiments. We run

the ITR task on both standard image-caption datasets (MS-COCO and Flickr30k) and

their more fine-grained counterparts (MS-COCO-FG and Flickr30K-FG). The models

are evaluated on image-to-text (i2t) and text-to-image (t2i) tasks, and we report the re-

call at 1 for both. This experiment allows us to assess how refining textual descriptions

and increasing dataset granularity impact model performance.

Set 2: Model Robustness and Perturbation Sensitivity (RQ4.2). In these experiments,

we the robustness to perturbations of state-of-the-art VLMs (ALIGN, AltCLIP, CLIP,

and GroupViT) on the coarse-grained vs. fine-grained datasets. We apply 13 pertur-

bations across the four selected datasets (MS-COCO vs. MS-COCO-FG, and Flickr30k

vs. Flickr30K-FG). The perturbations are designed to test the models’ sensitivity to

changes in word order and robustness to noisy input. We analyze the performance

drop of the models after each perturbation and measure their sensitivity to word or-

der, lexical variations, and typos.

5.5.3 Results

Set 1: Coarse vs. Fine-Grained Datasets Evaluation across Selected Models (RQ4.1).

To address RQ4.1, we evaluate models R@1 performance for both i2t and t2i retrieval

and compare the results between the original datasets (MS-COCO, Flickr30k) and their

fine-grained versions (MS-COCO-FG, Flickr30k-FG). Table 5.2 highlights that refining

the captions improves performance in most cases. Across datasets, we observe signifi-

cant improvements in R@1 scores. The highest performance gain is a 29.11% improve-

ment in CLIP for t2i retrieval on the Flickr30k dataset. On average, scores increase

by 12.63% on MS-COCO and 10.05% on Flickr30k. Specifically, MS-COCO exhibits an

8.14% increase for i2t retrieval and a 17.11% increase for t2i, while Flickr30k shows a

4.75% rise in i2t scores and a 15.35% rise for t2i. However, there are exceptions, par-

ticularly in the CLIP MS-COCO t2i and GroupViT MS-COCO i2t tasks, where refined

captions do not improve the scores. Despite these few exceptions, the overall results

demonstrate that refining textual descriptions enhances retrieval performance, with

the greatest benefits observed in t2i retrieval, which saw an average 16.23% improve-

ment compared to a 6.44% increase in i2t retrieval. Therefore, we answer RQ4.1 as

follows: the results suggest that concept granularity in captions positively impacts the

performance of VLMs on ITR tasks, especially for text-to-image retrieval.

Set 2: Model Robustness and Perturbation Sensitivity (RQ4.2). To address RQ4.2,

we assess the robustness of four VLMs (ALIGN, AltCLIP, CLIP, GroupViT) to various

perturbations across MS-COCO, Flickr30k, and their refined counterparts. We apply
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Table 5.2: Model performance, on the i2t and t2i tasks. “DCG” is short for “DCGCM.” “MS-. . . ”
is short for “MS-COCO” and “Fli. . . ” for Flickr30k.”

i2t t2i rsum

Model R@1 R@5 R@10 DCG R@1 R@5 R@10 DCG i2t t2i

M
S-

..
.

ALIGN 42.22 54.42 60.48 2.45 22.93 42.15 51.01 1.60 157.12 116.09

AltCLIP 40.95 53.44 58.64 2.43 22.47 41.85 50.90 1.61 153.03 115.22

CLIP 33.66 45.29 50.08 2.32 16.15 33.11 42.06 1.66 129.03 91.32

GroupViT 24.88 34.38 35.72 1.97 8.29 18.90 25.59 1.41 94.98 52.78

M
S-

..
.F

G ALIGN 44.59 56.55 64.20 2.50 25.60 45.64 54.65 1.61 165.34 125.89

AltCLIP 43.97 57.23 61.83 2.51 25.45 45.86 54.75 1.63 163.03 126.06

CLIP 38.16 50.38 55.20 2.43 16.15 33.11 42.01 1.66 143.74 91.27

GroupViT 24.88 34.38 35.72 1.97 9.58 21.38 28.68 1.42 94.98 59.64

Fl
i.

..

ALIGN 70.52 83.58 88.90 3.03 35.56 58.78 67.64 1.70 243.00 161.98

AltCLIP 67.98 82.46 86.40 2.99 33.06 56.42 65.74 1.69 236.84 155.22

CLIP 58.06 72.54 79.30 2.85 19.30 39.74 49.22 1.70 209.90 108.26

GroupViT 35.34 49.24 50.80 2.20 8.36 19.26 26.02 1.38 135.38 53.64

Fl
i.

..
FG

ALIGN 75.28 87.38 90.80 3.10 39.80 64.76 73.44 1.73 253.46 178.00

AltCLIP 71.66 85.96 87.40 3.05 37.10 61.02 70.60 1.72 245.02 168.72

CLIP 63.70 77.72 82.60 2.95 24.92 46.00 55.60 1.73 224.02 126.52

GroupViT 38.50 53.88 52.30 2.26 8.92 20.98 28.54 1.38 144.68 58.44

the proposed perturbations to contrast how well models handle changes in word order,

lexical variations, and typos, in the coarse-grained vs. fine-grained settings. The results

are shown in Table 5.2. The results indicate consistent drops across most perturbation-

dataset pairs. The most notable decrease is caused by the shuffle all words perturbation,

where randomly shuffling all words in captions leads to the largest score drops, under-

scoring the models’ reliance on correct word order for accurate retrieval. In contrast,

the lexical variation perturbation has the smallest effect, indicating a greater model re-

silience to synonym substitution. Interestingly, while most perturbations negatively

affect performance, in some cases, refined datasets exhibit better robustness. For ex-

ample, on MS-COCO-FG, models show smaller relative performance drops for when

compared to MS-COCO. This trend is less consistent for Flickr30k-FG, which shows

smaller performance drops than Flickr30k for only 5 of the 13 perturbations. This

discrepancy may be due to the inherently more detailed nature of Flickr30k captions,

making additional granularity less beneficial than in MS-COCO, which has coarser

captions. Overall, these findings highlight the sensitivity of VLMs to perturbations,

with word order being particularly critical. Interestingly, this contradicts prior work
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Table 5.3: Rsum after applying perturbation.

Perturbation MS-COCO MS-COCO-FG Flickr30k Flickr30k-FG

ALIGN

No perturbation 116.09 125.89 161.98 168.72

Shuffle N&A 100.00 109.58 139.33 145.39

Shuffle all words 85.78 97.58 120.39 130.77

Shuffle all but N&A 98.03 116.59 133.67 154.19

Shuffle within trigrams 101.70 116.12 144.65 154.16

Shuffle trigrams 104.23 117.86 145.06 156.83

Distraction 112.17 124.91 156.20 163.51

Lexical variation 108.88 119.46 157.79 161.61

Typos 103.07 115.25 152.83 152.01

AltCLIP

No perturbation 115.22 126.06 155.22 178.00

Shuffle N&A 96.84 107.54 133.63 154.82

Shuffle all words 88.41 98.91 121.62 132.39

Shuffle all but N&A 100.08 113.69 135.68 159.44

Shuffle within trigrams 101.60 113.66 138.82 160.87

Shuffle trigrams 103.81 115.35 143.14 163.60

Distraction 110.20 120.63 157.08 173.07

Lexical variation 107.46 118.20 148.64 174.12

Typos 100.91 112.60 141.32 161.71

CLIP

No perturbation 91.32 91.27 108.26 126.52

Shuffle N&A 31.23 72.24 86.06 99.74

Shuffle all words 41.24 60.87 69.19 77.82

Shuffle all but N&A 28.93 75.40 82.52 99.31

Shuffle within trigrams 26.11 74.12 84.57 100.26

Shuffle trigrams 30.60 76.41 91.08 103.33

Distraction 84.05 89.93 105.75 121.10

Lexical variation 74.12 84.04 101.26 139.32

Typos 66.30 76.86 87.99 105.37

GroupViT

No perturbation 52.78 59.64 53.64 58.44

Shuffle N&A 43.62 49.00 46.82 49.87

Shuffle all words 41.94 46.82 47.83 46.89

Shuffle all but N&A 49.08 54.58 51.82 48.32

Shuffle within trigrams 48.18 54.52 51.72 54.36

Shuffle trigrams 48.56 53.98 52.84 47.52

Distraction 51.18 58.23 53.47 59.91

Lexical variation 48.61 53.71 49.78 53.89

Typos 43.11 49.81 47.65 50.44
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on this topic where authors argue that reshuffling word order does not affect ITR

performance (Yuksekgonul et al., 2023). Therefore, we answer RQ4.2 by stating that

fine-grainedness of a dataset positively impacts the performance of VLMs on ITR task.

5.5.4 Model Input Analysis

We further investigate the robustness of the models under different types of caption

perturbations. For each model, we collect a sets of collect perturbed captions and their

corresponding rsums. We categorize all the perturbed captions into three groups based

on their impact on model performance: (i) perturbed captions causing performance

decrease, (ii) perturbed captions causing performance increase, and (iii) perturbed cap-

tions with no change in performance. We proceed by calculating Jaccard similarity for

each category (increased, decreased, no change) across all image-caption pairs within

a dataset. This analysis helps identify patterns in how each model’s performance is

affected by different perturbations.

The results are shown in Table 5.4. The highest Jaccard similarity scores are observed

for perturbed captions that do not impact the models’ performance. This indicates that

certain types of captions consistently lead to outcomes where the model’s performance

remains unaffected, regardless of perturbation type. It implies that the models exhibit

a degree of robustness towards specific types of caption variations, which indicates

a level of generalizability. Conversely, the lowest Jaccard similarity scores are associ-

ated with perturbed captions that increase models performance. This indicates that

captions that lead to outcomes where the model’s performance improves vary signifi-

cantly.

5.6 related work

5.6.1 Cross-Modal Retrieval

Cross-modal retrieval (CMR) methods learn a latent space, where the similarity of

concepts from different modalities can be measured using a distance metric such as

cosine or Euclidean distance. Some of the earliest approaches in CMR used canoni-

cal correlation analysis (Gong et al., 2014; Klein et al., 2014). This was later followed

by the emergence of a dual encoder architecture that combined recurrent and convo-

lutional components, gaining prominence in the field and often employing a hinge

loss (Frome et al., 2013; Wang et al., 2016b). Further advancements have increased

effectiveness through techniques like hard-negative mining (Faghri et al., 2018). Subse-
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Table 5.4: Jaccard similarity across perturbations, averaged per model.

Jaccard similarity per group

decreased increased unchanged

MS-COCO

ALIGN 0.1680 0.0802 0.6810

AltCLIP 0.1676 0.0714 0.6911

CLIP 0.1792 0.0700 0.7025

GroupViT 0.1653 0.0658 0.7215

MS-COCO-FG

ALIGN 0.1640 0.0902 0.6613

AltCLIP 0.1659 0.0725 0.6752

CLIP 0.1778 0.0740 0.6805

GroupViT 0.1598 0.0650 0.7073

Flickr30k

ALIGN 0.1342 0.0513 0.6136

AltCLIP 0.1650 0.0838 0.6429

CLIP 0.1879 0.0858 0.6510

GroupViT 0.1646 0.0761 0.6913

Flickr30k-FG

ALIGN 0.1275 0.0518 0.6071

AltCLIP 0.1615 0.0807 0.6425

CLIP 0.1868 0.0799 0.6249

GroupViT 0.1542 0.0728 0.6890

quently, the incorporation of attention mechanisms, such as dual attention (Nam et al.,

2017), stacked cross-attention (Lee et al., 2018), and bidirectional focal attention (Liu

et al., 2019), further improved performance. Other work aims to improve CMR perfor-

mance through modality-specific graphs (Wang et al., 2021b), or image and text genera-

tion modules (Gu et al., 2018), or learning sparse multimodal representations (Nguyen

et al., 2024). And there is domain-specific research focusing on CMR in various fields

such as fashion (Laenen et al., 2018; Goei et al., 2021), e-commerce (Hendriksen et al.,

2022), cultural heritage (Sheng et al., 2021b), and cooking (Wang et al., 2021b).

Recent methods use transformer-based dual encoders trained on extensive data. AL-

BEF (Li et al., 2021a) aligns unimodal representations before fusion, X-VLM (Zeng et

al., 2022) adds a cross-modal encoder for fine-grained VL representations. Florence

(Yuan et al., 2021) uses adaptation models for object-level representations, and CLIP
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(Radford et al., 2021) predicts image-caption pairs. ALIGN (Li et al., 2021a) uses a

dual encoder on image alt-text pairs. FILIP (Yao et al., 2022) features late multimodal

interaction, and SLIP (Mu et al., 2022) combines language and image self-supervision.

DeCLIP (Li et al., 2022c) improves CLIP pretraining via self-supervision and cross-

modal supervision. AltCLIP (Chen et al., 2023c) uses a pre-trained multilingual text

encoder and a two-stage training schema. GroupViT (Xu et al., 2022) reintroduces the

grouping mechanism to vision transformers, dynamically forming visual segments for

various images.

Another line of work adopts transformer encoders (Vaswani et al., 2017) for the ITR

task (Messina et al., 2021), adapting models like BERT (Devlin et al., 2019). ViLBERT

(Lu et al., 2019) and LXMERT (Tan and Bansal, 2019) introduce a two-stream archi-

tecture, while B2T2 (Alberti et al., 2019), VisualBERT (Li et al., 2019b), Unicoder-VL

(Li et al., 2020a), VL-BERT (Su et al., 2020), and UNITER (Chen et al., 2020b) propose

single-stream architectures. Oscar (Li et al., 2020d) incorporates caption object tags

with region features, and BEIT-3 (Wang et al., 2022b) adapts multiway transformers.

This chapter focuses on transformer-based dual encoder models due to their perfor-

mance on various VL tasks. We select four SOTA methods and provide a comparative

analysis of their performance on the ITR task.

5.6.2 Vision-Language Model Evaluation

The evaluation of VLMs assesses their performance across various tasks and datasets.

Standard benchmarks are MS-COCO (Lin et al., 2014; Chen et al., 2015) and Flickr30k

(Young et al., 2014) for tasks like image captioning, visual question answering, and

ITR. More fine-grained benchmarks like MS-COCO-FG and Flickr30k-FG (Chen et

al., 2023b) are due to limitations in concept granularity and diversity. Specialized

datasets like CUB-200 (Welinder et al., 2010), ABO (Collins et al., 2022), and Fash-

ion200k (Han et al., 2017) cater to specific domains. Large-scale and domain-specific

datasets like Conceptual Captions (Sharma et al., 2018), XMarket (Bonab et al., 2021),

and Recipe1M (Marın et al., 2021) enable evaluation of VLMs in real-world applica-

tions.

Evaluating the robustness and generalization of VLMs is key for understanding

real-world performance. Studies have explored VLMs robustness to adversarial at-

tacks (Zhao et al., 2023b), domain shifts, and input perturbations (Yuksekgonul et al.,

2023), aiming to identify vulnerabilities and improve robustness. Adversarial attacks

on VLMs have been extensively studied in visual question answering (Bartolo et al.,

2021; Cao et al., 2022b; Kaushik et al., 2021; Kovatchev et al., 2022; Li et al., 2021b;

Sheng et al., 2021a; Wallace et al., 2019; Xu et al., 2018; Zhang et al., 2022a) and image

captioning (Aafaq et al., 2021; Chen et al., 2018; Xu et al., 2019).
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Another important aspect of model evaluation is metrics. For CMR tasks, the quality

of retrieved top-k images or texts given a query in a different modality is a primary

focus. Common metrics include Recall@K (Kaur et al., 2021; Hendriksen et al., 2023),

adaptations of Discounted Cumulative Gain (Carrara et al., 2018), Normalized Dis-

counted Cumulative Gain (Messina et al., 2021), Precision-Recall curves (Wang et al.,

2020; Zhong et al., 2020; Xu et al., 2020), F-score (Jiang et al., 2017), Mean Average

Precision (Wang et al., 2014), and Mean Reciprocal Rank (Qin et al., 2016; Jiang et al.,

2017).

Unlike prior work in this domain, we focus on both benchmark performance and

robustness analysis, while incorporating a diverse set of evaluation metrics to provide

a comprehensive understanding of VLM capabilities in the context of the ITR task.

5.7 conclusion

In this chapter, we address the brittleness of the evaluation pipeline on the ITR task,

emphasizing two primary concerns: the coarseness of existing benchmarks and the

limitations of current evaluation metrics. Through our analysis, we compare standard

datasets, MS-COCO and Flickr30k, with their fine-grained counterparts, MS-COCO-

FG and Flickr30k-FG. We propose an evaluation framework that encompasses a taxon-

omy of perturbations and a new evaluation metric designed to improve the robustness

of ITR assessments.

We selected four state-of-the-art VLMs – AltCLIP, ALIGN, CLIP, and GroupViT – for

our experiments and evaluate their performance on the ITR task using the novel frame-

work. We discover that caption augmentation improves the performance of VLMs

on the ITR tasks. We observe the biggest decline when testing models sensitivity

to word order which is opposite to prior findings in this domain. Specifically, the

fine-grainedness of a dataset positively impacts VLMs performance on the ITR task,

with finer-grained datasets, MS-COCO-FG and Flickr30k-FG, leading to higher perfor-

mance for all selected models. This finding highlights the need for more benchmarks

that would capture both coarse- and fine-grained semantic relationships between im-

ages and text. Therefore, we suggest that future benchmarking efforts should focus on

developing rich datasets that enable experimenters to systematically vary the level of

granularity to better evaluate the capabilities of VLMs.

However, this study has limitations. We focused on a specific set of perturbations

and datasets, which may not encompass the full spectrum of real-world scenarios.

Additionally, while we selected leading models in the domain of ITR, evaluating a

broader range of VLMs could yield a more comprehensive understanding of their

performance across diverse datasets and evaluation frameworks. Expanding our eval-
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uation to include models with varied architectures and training methodologies could

provide deeper insights into their robustness and generalization in the ITR task.

Future work should aim to extend our framework by incorporating additional per-

turbations and datasets, as well as expanding the range of evaluated models. Another

promising avenue includes exploring other facets of VLM performance on the ITR task,

such as interpretability and domain adaptation, to further improve our understanding

of their capabilities and limitations.

As a result, our answer to RQ4 is that improving the evaluation and benchmarking

process of vision-language models on the image-text retrieval task involves addressing

the granularity of benchmarks and limitations of current evaluation metrics. Finer-

grained datasets improve model performance even when input variations are intro-

duced, highlighting the sensitivity of models to changes in input data. An evaluation

framework incorporating a taxonomy of perturbations can test model robustness, em-

phasizing the need for detailed datasets and robust evaluation methods to accurately

assess model capabilities and develop models resilient to input variability.



6
P R E D I C T I N G P U R C H A S E I N T E N T F O R

P R O D U C T R E T R I E VA L

Next, we switch back to the topic of product retrieval and focus on the problem of

understanding and predicting purchase intent in e-commerce. Prior work in this area

has primarily focused on user sessions where the customer is identified by the plat-

form. However, in practice, a significant portion of online shopping journeys begin

anonymously.

The context of cross-device interactions adds another layer of complexity. Mod-

ern consumers frequently switch between devices such as smartphones, tablets, and

computers during their purchasing journey. Each device provides a distinct set of

modalities, including screen size, input method, and usage context, all of which can

influence user behavior and intent.

This discrepancy presents an interesting challenge and an opportunity to explore

how purchase intent can be effectively predicted in both identified and anonymous

sessions in a cross-device scenario.

Therefore, motivated by the need to better understand and predict purchase intent

in this multifaceted environment, we pose the following research question:

RQ5: How can we facilitate product retrieval by predicting purchase intent in cross-

device setting?

To answer this question, we will sample session logs from the e-commerce platform

to identify signals indicative of purchase intent. These signals include session duration,

dwell time, device type, channel, and search queries. By engineering features based

on these insights, we aim to develop predictive models tailored for both anonymous

and identified sessions. We proceed by analyzing the performance of these models.

This chapter was published at the 44
th European Conference on Information Retrieval (SIGIR eCom 2020)

under the title “Analyzing and Predicting Purchase Intent in E-commerce: Anonymous vs. Identified
Customer” (Hendriksen et al., 2020).
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Figure 6.1: Customer journeys across sessions, with multiple interests and devices; the colors
indicate different devices.

Through this chapter, we aim to improve our understanding of user behavior across

devices in e-commerce settings.

6.1 introduction

Information retrieval (IR) technology is at the heart of today’s e-commerce platforms,

in the form of search engines, recommenders, and conversational assistants that con-

nect users to the products they may be interested in (Rowley, 2000). To help improve

the effectiveness of IR technology in an e-commerce context, the problem of analyzing,

modeling, and, ultimately, predicting customers’ purchase intent has been studied ex-

tensively in academia and industry (Bellman et al., 1999; Agichtein et al., 2006; Lo

et al., 2016)

Purchase intent prediction. Here, purchase intent is defined as a predictive measure

of subsequent purchasing behavior (Morwitz and Schmittlein, 1992).

Figure 6.1 illustrates the complexities of customer behavior during a sequence of

sessions, when multiple tasks, interests, and devices may play a role. Areas in the

back of the figure are meant to signify different user journeys across time, purple for

one that is focused on fridges, yellow for one that is focused on a birthday present.

Colored rectangular blocks in the front indicate different devices used by the user.

Initial exploration of a relatively expensive item (a fridge) starts on a smartphone and

continues on a tablet, while the journey ends with a purchase of a fridge on a PC.

The purchase of a fridge is interleaved with the purchase of a (lower-priced) birthday
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present, with initial exploration on a PC, followed by further exploration on a TV and

PC, and, ultimately, a purchase on a PC.

Online search behavior that targets transactions has been analyzed at scale at least

since the work by Broder (2002), who identified a class of so-called transactional queries,

where the user is seeking to reach a page with more interaction opportunities, e.g., to

conduct a purchase, download or sign-up. In particular, factors influencing online pur-

chases have been described as early as in 2002 (George, 2002), and work on predicting

purchases goes back to at least the work of (Ben-Shimon et al., 2015), where the task

was to predict whether a given customer is going to purchase within a given session.

Challenges. Despite the many advances, purchase intent prediction still has many

challenges (Tsagkias et al., 2020). In particular, previous work on purchase intent pre-

diction has focused mostly on customers of an e-commerce platform who are identified

or recognized by the platform. A diverse range of models has been considered, from

traditional feature-based models such as boosted decision trees to sequence-based neu-

ral models such as RNNs. However, based on the analysis of de-identified data from

an e-commerce website available to us, more than 50% of traffic comes from anony-

mous users. Purchase intent detection for anonymous users is particularly challenging

because it cannot rely on historical information about the user on which many of the

existing models rely.

Features for purchase intent prediction. In this chapter, we focus on identifying sig-

nals that suggest purchase intent in an anonymous and identified setting. We do this

by analyzing purchase vs. non-purchase sessions sampled from a large European e-

commerce website and testing the features based on our observations on a production-

ready model. We further test the obtained feature sets on five other classifiers to

explore the generalizability of our findings. In particular, we include features derived

from session-based data such as page dwell time and customer-specific data such as

the number of days since the last purchase. Session-based features have the advantage

that they are available both during sessions when a user is identified (i.e., the customer

has logged-in or is recognized through cookies) and anonymous sessions (when the

customer is not known). Customer-related features are only available during identi-

fied sessions. Interestingly, many of the features proposed previously (Seippel, 2018)

apply only to identified sessions: purchase intent prediction for anonymous sessions has
been studied very little.

To fill this gap, we analyze a dataset of more than 95 million sessions, sampled from

four weeks of anonymized user interaction data in a European e-commerce platform.

We answer the following research questions:

RQ5.1: How do purchase sessions differ from non-purchase sessions? In Section 6.4 we

compare purchase vs. non-purchase sessions in such aspects as session length, tem-

poral variations, device and channel type, queries. Among others, we find out that
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purchase sessions tend to be longer than non-purchase ones, customers are more likely

to purchase in the evening and during a weekday, and more likely to own more than

1 device.

RQ5.2: What are the important session-based features that allow us to tell purchase sessions
apart from non-purchase sessions? What are the important historical features that should in-
form predictors for identified sessions? How does the importance of features change across the
session? Based on the experiments described in Section 6.5, we conclude that historical

features related to previous purchasing behavior are highly important for detecting

purchases in the identified setting. For the anonymous setting, however, dynamic

features related to page dwell time and sequence of pages are most important. Be-

sides, the importance of dynamic features increases as the session continues, while the

importance of static features decreases.

RQ5.3: How effective are models used for purchase intent prediction for anonymous vs.
identified sessions? Furthermore, to which degree do the proposed features help improve perfor-
mance for anonymous sessions? In Section 6.5, we show that in the anonymous setting,

tree-based and neural classifiers demonstrate the best performance, and adding extra

features to models improves F1 by about 17%. In contrast, for the identified setting

all models demonstrate high performance and adding extra features do not provide a

significant gain.

The principal contributions of our research are the following:

• We conduct an in-depth analysis of a real-world customer interaction dataset with

more than 95 million sessions, sampled from a European e-commerce platform. We

identify session features such as device type and conversion rate, weekday, channel

type, and features based on historic customer data such as number of previous

orders and number of devices to distinguish between purchase and non-purchase

sessions (see Section 6.4).

• We define two feature sets for purchase prediction, tailored towards anonymous

sessions and identified sessions (see Section 6.5).

• We extend an existing production-ready model to evaluate our proposed features

and run additional experiments with classifiers generally used for this task. We

find F1 improvements of up to 17% in purchase intent prediction for anonymous

sessions and reach an F1 of 96% for identified sessions on held-out data collected

from a real-world retail platform (see Section 6.5).

6.2 background and definitions

In our study, we operate with the following definitions.

A session is a sequence of requests made by a single end-user during a visit to
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a particular site. A session ends if the user is idle for more than 30 minutes. We

define two types of sessions: purchase sessions, during which the customer buys an

item, and non-purchase sessions, during which the customer does not buy anything. In

connection to this, we define purchasers as customers who had at least one purchase

session, whereas non-purchasers are customers who were identified but have never

purchased anything. We furthermore distinguish between identified sessions, where a

customer is logged in or recognized with a browser cookie, and anonymous sessions

where this is not the case. Additionally, we denote the number of actions taken during

a given session as the session length, where an action corresponds to opening a new web

page, submitting a search query, or adding/removing an item to/from the shopping

basket.

Device switch is the act of changing the type of browsing device between two con-

secutive sessions that belong to the same journey. For instance, if a customer first

explores the platform on a smartphone and afterward accesses the platform on a PC,

she switches from a smartphone to a PC.

A channel indicates the way through which a customer enters the platform. For

example, if the customer comes to the platform via an advertisement, she uses a paid

channel.

The conversion rate denotes the fraction of visits during which a purchase was made

(Moe and Fader, 2004). We use this metric to compare device popularity in a pur-

chasing context. We calculate the conversion rate by dividing the number of pur-

chasing sessions by the overall number of sessions. In order to protect sensitive in-

formation, we only report standardized conversion rates for each device; since we are

interested in differences across devices types, this suffices for our purposes. The stan-

dardized conversion rate is computed by subtracting the mean conversion rate per

device type from the desired conversion rate and dividing the result by the stan-

dard deviation of the device-specific conversion rate. For instance, if our device

specific conversion rates are Conversion Rates = {0.5, 0.2, 0.3}, the mean of device-

specific conversion rates is Conversion Rate = 0.33 and the standard deviation of con-

version rates is σ = 0.12. Therefore, the resulting standardized conversion rates are

Standardized Conversion Rates = {1.34,−1.07,−0.27}

6.3 dataset description

In this section, we describe how we extract a dataset consisting of anonymized user in-

teraction data from the search logs of an e-commerce platform, and summarize dataset

statistics.

Data Collection. Our dataset comprises four weeks (28 days) of anonymized visits
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Table 6.1: Dataset statistics.

Description Total

Sessions 94,402,590

Anonymous 55,305,709

Logged-in or recognized 39,096,881

Logged-in or recognized customers 6,125,781

Queries 31,185,176

Device types
PC, Smartphone, Tablet,

Game Console, TV

sampled from a European e-commerce platform in October 2019. The original sample

of the log entries includes a unique non-personal customer identifier (for identified

users), the type of browsing device used during the session, as well as a timestamp

for every query, and a URL of each clicked page. We convert all the timestamps to

the Central European Time Zone (CET). We additionally recorded the price of every

product the customers have seen and the prices of the items they ended up buying. In

cases where a customer starts a session without logging in and ends up logging in at

a later point in the session, we assign the session to the customer.

To filter out bot traffic, we apply several measures related to location and device

type (Bomhardt et al., 2005). First, we filter out sessions based on location, to only

include entries from the European countries from which the majority of the customers

come; bots come mostly from non-European IPs, especially North-America. Second,

we specify the set of device types we are interested in and remove all the entries from

other devices, leaving us with PC, Smartphone, Tablet, Game Console, and TV; bots often

do not specify a device type.

Dataset Statistics. Table 6.1 provides descriptive statistics of the resulting dataset.

The dataset contains 95,757,177 sessions, out of which 54,144,152 (about 56.5%) are

anonymous. In total, the dataset contains 9,663,509 identified users. We additionally

keep track of the device types used for browsing and distinguish between five such

device types: PC, smartphone, tablet, game console, and TV. The table also lists the

number of search queries; these are the queries submitted during the sessions captured

in the log.

6.4 characterizing purchase intent

We explore customer behavior and, in particular, the difference in the behavior of pur-

chasing and non-purchasing users. These explorations aim to identify characteristics
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Figure 6.2: CCDF of the session length per device type for purchase sessions (p.s.) and non-
purchase sessions (non-p.s.).

that may help us improve the effectiveness of purchase intent predictors. We analyze

several aspects of sessions, such as the length of purchase and non-purchase sessions,

the temporal characteristics of sessions, and device information. Furthermore, we in-

vestigate the channels from which customers start sessions and issue queries during

purchase sessions and non-purchase sessions.

6.4.1 Session Length

First, we examine the overall session length for purchase sessions and non-purchase

sessions. Figure 6.2 plots the complementary cumulative distribution function (CCDF)

of the session lengths of purchase sessions and non-purchase sessions per device type.

As can be seen in the area between the P50 and P90 percentiles in Figure 6.2, pur-

chase sessions are in general longer than non-purchase sessions. Moreover, the pur-

chase session length per device varies less than the non-purchase session length per

device. It can be explained by the fact that non-purchase sessions can be both very

short or rather long, depending on the underlying user intents. For instance, a user

could quickly look something up or spend some time exploring the catalog. On the

other hand, in the case of purchase sessions, user intentions are less ambiguous. Usu-

ally, users look for a specific product that they have in mind and, upon finding it,

proceed to purchase.

From a device perspective, the shortest sessions take place on smartphones, whereas

sessions on tablets are generally longer. The longest sessions occur on the PC, TV,

and game console. This finding holds for both purchase sessions and non-purchase
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Figure 6.3: The fraction of purchase sessions and non-purchase sessions across days of the
week w.r.t. total amount of purchase and non-purchase sessions. Most activity occurs on
weekdays.

sessions. However, in the tail of the distributions, the distinction between purchase

session length and non-purchase session length is not as clear as between the P50 and

P90 percentiles. The non-purchase session length distribution on the PC has an excep-

tionally long tail. Overall, we can attribute these findings to the fact that smartphones

have a smaller screen and are therefore less convenient for longer sessions. Tablet

screens are bigger than smartphone screens; hence, the sessions can last longer. The

PC screen is the biggest one, and therefore PC users exhibit event longer sessions.

6.4.2 Temporal Variations

Next, we look into the temporal characteristics of purchase sessions and non-purchase

sessions, such as their distribution across days of the week and the sessions’ starting

hours.

First, we want to understand customer activity during the days of the week. Fig-

ure 6.3 shows how the number of purchase and non-purchase sessions varies across

days of the week. The three most popular days for purchase sessions are Thursday,

Tuesday, and Wednesday. In total, the purchase sessions of these three days amount to

48.55% of all purchase sessions. On the other hand, the least popular purchase days are

Sunday, Saturday, Monday, and Friday. They contribute to 51.45% of purchase sessions.

The observed pattern of purchase behavior hints at the fact that customers prefer to

buy during weekdays, which aligns with their workweek. Besides, we conclude that

the lower purchase activity on Monday and Friday attributes to their proximity to
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weekends.

In the case of non-purchase sessions, the most active session days are Wednesday,

Monday, and Thursday. Altogether, these days contribute to 58.55% of non-purchase

sessions. The least active days are Tuesday, Sunday, Saturday, and Friday. All the

sessions of these days amount to 41.44%. Just like for purchase sessions, the activ-

ity for non-purchase sessions also centers around weekdays. However, the difference

between the three most active days and the four least active days for non-purchase ses-

sions is bigger than the corresponding difference for purchase sessions. For purchase

sessions, the difference is only 2.9%, whereas, for non-purchase sessions, the differ-

ence is 17.11%. Moreover, Tuesday, the 2-nd most popular day for purchase sessions

is the least popular day for non-purchase sessions. On the other hand, Monday, the

2-nd most popular day for non-purchase sessions is the 3-rd least popular day for pur-

chases. The observation indicates that people need time to consider a purchase before

making the buying decision. Hence, they spend Monday, the first day of the new week

on considering the purchase, and the purchase itself happens on Tuesday or later in

the week. In general, the most active day of the week is Wednesday, whereas the least

active day is Sunday. These findings strongly suggest that user behavior depends on

the day of the week. In general, people are most active on weekdays, during their

workweek, their activity peaks in the middle of the week. On the other hand, at the

beginning and end of the workweek, user activity is generally lower.

Next, we look at user behavior on the level of the hour during which a session starts.

As mentioned in Section 7.4.1, all the hours are represented in CET. Figure 6.4 shows

how purchase sessions and non-purchase sessions spread across the hours of the day.

As expected, the least active hours are in the early morning, in the period from 1

am to 3 am. That can be explained by the fact that most people sleep during the night.

(Note that the majority of the e-commerce platform customers come from Europe;

hence, time does not vary that much.) Moreover, the activity on the platform during

the period from 10 am till 5 pm is stable both for purchase and non-purchase sessions,

whereas the most active hours are in the evening, i.e., from 6 pm till 8 pm. In general,

our observations correspond to the established rhythm of the daily life of the majority

of people, who sleep during the night, browse e-commerce platforms both during

work hours and in the evening after work.

6.4.3 Channel Types

Next, we look at whether channel types distributions change across purchase and non-

purchase sessions. We define the following channel types: direct where a user enters

the platform directly; paid where a user enters the platform through search engine

advertisement, and organic where a user enters the platform through a web search
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Figure 6.4: The fraction of purchase session and non-purchase sessions across the hours of the
day w.r.t. total amount of purchase and non-purchase sessions. Most purchase sessions start
in the evening.

Table 6.2: Channel types for purchase and non-purchase sessions.

Sessions Stand

Channel Purchase (%) Non-purchase (%) conv. rate

Direct 71.07 77.30 −0.56

Paid 16.74 12.92 0.54

Organic 11.78 7.83 0.94

Other 0.31 1.05 −1.33

engine and unpaid results. Table 6.2 displays the channel distribution across purchase

and non-purchase sessions.

Both for purchase and non-purchase sessions, the direct channel is the most used chan-

nel to enter the platform. However, for purchase sessions, the percentage of sessions

which start with the direct channel is 8.06% less than the fraction of non-purchase

sessions, which started with the direct channel. The second most popular channel

for purchase and non-purchase sessions is a paid channel. However, in the case of

this channel, the fraction of purchase sessions is 12.92% bigger than the correspond-

ing channel type fraction for non-purchase sessions. The organic channel is the third

channel in terms of popularity for both session groups. The organic channel fraction

for purchase sessions is 50.40% bigger for purchase sessions when compared with

non-purchase sessions.

Overall, during purchase sessions, users are more likely to enter the platform via

paid or organic channels, whereas for non-purchase sessions the direct channel is
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Table 6.3: User device statistics per session.

Device(s) Purchasers (%) Non-purchasers (%)

> 1 device 24.05 16.22

1 device 75.95 83.78

2 devices 22.23 15.39

3 devices 1.82 0.82

4 devices 0.01 0.01

5 devices 0 0

more common. It can be explained by the fact that purchasers decide to converge after

being offered an advertisement or a search result that matches their interest, whereas

non-purchasers may enter the platform directly to explore the catalog.

6.4.4 Devices

In this subsection, we investigate purchase intent from the perspective of device types.

In particular, we look at the device types used by purchasers and non-purchasers and

analyze device switches.

Device type

First, we want to understand how many users are using multiple devices and which

devices customers use for purchase and non-purchase sessions.

Table 6.3 shows how many devices purchasers and non-purchasers own. The major-

ity of users from both groups are single-device users. However, the fraction of single-

device purchasers is 9.35% smaller than the corresponding fraction of non-purchasers.

On the other hand, the fraction of multi-device users for purchasers is 45.28% bigger

than the corresponding fraction for non-purchasers. In general, multi-device users

represent almost a quarter of the purchasers. As the number of devices increases, the

difference between purchasers and non-purchasers grows. Our observations support

the statement that multi-device users tend to be more engaged (Montanez et al., 2014).

Next, we examine the distributions of purchase and non-purchase sessions across

device types and device-specific standardized conversion rates; see Table 6.4. The

PC is the device with the highest conversion rate. Indeed, the fraction of purchase

sessions is 30.70% bigger than the fraction of non-purchase sessions. The device with

the second-highest conversion rate is a tablet. For this device, purchase sessions are

7.12% more frequent than non-purchase sessions. The Smartphone is the device with

the second-lowest conversion rate. For this device, the number of purchase sessions is
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Table 6.4: Purchase and non-purchase sessions per device type and standardized conversion
rates.

Device
Purchase Non-purchase Stand.

sessions (%) sessions (%) conv. rate

Smartphone 47.00 58.09 −0.56

PC 44.97 34.40 1.61

Tablet 8.03 7.50 0.61

Game Console 0.01 0.01 −0.40

TV 0.01 0.01 −1.25

19.10% less frequent than the number of non-purchase sessions.

Game consoles and TVs are relatively new devices in e-commerce; hence, sessions

with these devices are relatively less frequent. Nevertheless, based on our observations,

we find that the game console is a device with the third-highest conversion rate. Inter-

estingly, its conversion rate is close to that of the smartphone. It can be explained by

the fact that device functionalities of smartphones and tablets in e-commerce context

blur due to the similarity of their interfaces and screen sizes. The number of purchase

sessions on a game console is 15.47% less than the number of non-purchase sessions.

The TV is the least common device, with the lowest conversion rate. The number

of purchase sessions on this device is 34.01 less than the number of non-purchase

sessions.

We can explain our findings by the fact that customers use different devices for

different purposes. For example, PCs and tablets seem to be used for the purchase,

whereas smartphones, game consoles, and TVs for exploration.

Device switches

Next, we analyze how users switch between devices before a purchase session.

Figure 6.5 shows device transition probability, including self-transitions. Generally,

the situation when a user remains on the same device is the most likely outcome for all

devices, except TV. There, the self-transition probability is lower than the probability

of switching from TV to PC, a device with the highest self-transition probability. A

probability of remaining on a smartphone is 5.03% lower than a self-transition prob-

ability for PC, whereas a probability to remain on a tablet is 17.28% lower than the

probability to remain on PC. The game console has the second-lowest self-transition

probability.

Next, we consider connections between two different devices. We characterize those

interconnections based on how likely a user is to switch from one device to another

one and vice versa.
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Figure 6.5: Device transition probability before a purchase session, including self-transitions.
The thickness of an arrow indicates the connection strength; the dashed line is the weakest
connection.

Strong interconnections Some pairs of devices have high probability interconnec-

tions. The strongest connection is between a smartphone and a PC, the two most

popular devices. The second strongest connection is between PC and tablet. There

is a bigger discrepancy between probability rates, with the probability of switching

to PC being 656.86% higher than of switching to tablet. The third strongest intercon-

nection is between a smartphone and a tablet with a stronger connection switch to a

smartphone, a more popular device. The probability of switching to a smartphone is

399.17% higher than switching to a tablet. Overall, the three interconnections form a

triangle that includes the three most popular devices: PC, smartphone, and tablet.

One-sided interconnections For a one-sided interconnection there is a high probabil-

ity of switching from one device to another, but a close to zero probability of switching

back. There are six cases of this type in Figure 6.5. TV is the device with the largest

number of one-sided interconnections, with PC, smartphone, tablet, and game console.

In all cases, the transition probability is low when TV is a target device, which can be

explained by relative difficulty to purchase on TV. The strongest one-sided intercon-

nection is between TV and PC. The probability of switching from TV to PC is 43.75%,

the highest transition probability for TV, and the highest probability to transition to
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Table 6.5: Queries per Session for Purchase and Non-Purchase Sessions per Device Type

Device
Purchase Sessions Non-Purchase Sessions

Query/Session % Query/Session %

Smartphone 4 52.92 0.05 42.40

PC 2 36.38 0.09 57.54

Tablet 4 10.67 0.01 0.05

Game Console 0.01 0.01 0.01 0.01

TV 0.01 0.01 0.01 0.01

Avg 3.16 100 0.06 100

another device. We explain this by the fact that PC is one of the most popular devices

for purchase. The second most likely device people switch to from TV is a smartphone,

whereas a probability to switch to a tablet or game console is 6.25%.

Another device with a significant number of one-sided interconnections is the game

console. Apart from the connection with TV discussed above, the device also has this

connection type with smartphone and PC. The transition probability is close to zero

when a game console is a target device. Unlike the situation with TV, came console

has a higher probability of switching to a smartphone, whereas the probability of

switching to PC is 1.75% less.

In general, all one-sided interconnection cases include switching from a less com-

mon device type such as game console or TV to a more conventional device, such as

PC, smartphone, or tablet.

Weak interconnections In some cases, the switch between two devices rarely hap-

pens, i.e., the transition probability is close to zero. As can be seen in Figure 6.5, there

is only one case of this type. It is a connection between a game console and a tablet.

Overall, the analysis of device switches before a purchase session supports the conclu-

sion that users tend to switch from less popular devices such as TV and game console

to more popular ones such as PC, smartphone, and tablet.

6.4.5 Queries

The next aspect of purchase intent that we examine is queries. We look at the number

of queries in purchase and non-purchase sessions and per device type. In total, the

dataset contains 31,185,176 queries, 1,302,195 or 4.17% of which are unique. Given the

number of sessions in the dataset, we can conclude that queries are infrequent.

Table 6.5 shows the query per session frequencies across five devices for both purchase

and non-purchase sessions. Besides, it also demonstrates which devices are most
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Table 6.6: Unique query counts for purchase and non-purchase sessions per device type. The
percentage is computed w.r.t. total number of queries per purchase or non-purchase session.

Device
Purchase sessions Non-purchase sessions

Count % Count %

Smartphone 180,542 36.89 321,640 39.57

PC 224,763 45.92 312,855 38.49

Tablet 83,881 17.14 175,909 21.64

Game Console 136 0.03 1,841 0.23

TV 46 0.01 582 0.07

Total 489,368 100.00 812,827 100.00

popular for querying during purchase and non-purchase sessions. Overall, queries are

more common in purchase sessions. This can be explained by the fact that querying is

more likely to happen when customers are determined to buy something.

Naturally, queries are most common for smartphones, PCs and tablets, and uncom-

mon for game consoles and TVs. Indeed, the current interface of game console and TV

makes it difficult to type queries, especially when compared to a PC or a smartphone.

The PC has the highest query per session frequency for non-purchase sessions

and second-highest frequency for purchase sessions. A smartphone has the second-

highest query per session frequency for non-purchase sessions and the highest query

frequency per non-purchase session. Tablet, on the contrary, has the third-highest

frequency for non-purchase sessions and the highest frequency for purchase sessions.

When it comes to query distributions per device for purchase and non-purchase ses-

sions, the ranking is somewhat consistent for both groups. During purchase sessions,

most queries are issued on a smartphone, whereas during non-purchase sessions PC

prevails. On the other hand, PC is the second most popular device for purchase ses-

sions, whereas for non-purchase sessions smartphone takes the second place. Tablet is

third for both groups. In general, the query distribution across devices correlates with

the session distribution across devices (see Table 6.4).

Next, we look at the number of unique queries for purchase and non-purchase

sessions and per device. Table 6.6 shows unique queries count and their corresponding

fractions. The fractions are computed w.r.t. the total number of queries per session

type and device. Overall, during purchase sessions users issue less unique queries, it

holds for every device class but a PC. This can be explained by the fact that during

purchase sessions users may retype a previous query to revisit the results they have

seen earlier, whereas non-purchasers want to explore and hence use more unique

queries.
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6.4.6 Purchase Intent Characteristics

What have we learned from the log analysis conducted in this section that might help

us to devise better models for purchase intent prediction? We found out that purchase

sessions tend to be longer what suggests that session length is an essential indicator

of purchase intent. Besides, the difference in session length depends on the type of

device customer uses. Moreover, we discovered how the day of week and hour of

the day influence purchase behavior. In particular, customers are more likely to buy

during the weekdays and in the evening. From the perspective of channels, there is

a difference, too. In particular, for non-purchase sessions, the direct channel is more

common, whereas purchase sessions are more likely to start with paid or organic

channels. From the device perspective, we found out that multi-device users are more

common among purchasers. Besides, we figured the probability of purchase for every

device and characterized transitions between devices. After looking into queries in

the dataset, we discovered that during purchase sessions, users issue more queries per

session. Besides, during purchase session, there are less unique queries.

6.5 predicting purchase intent

Next, we turn to predict purchase intent when a user is anonymous (“anonymous

setting”) and when a user is logged-in or recognized (“identified setting”). The goal

of our experiments is to evaluate how the features which we discovered during dataset

exploration influence purchase predictor performance in both settings. To accomplish

this, we derive a feature set for each setting, and evaluate the features by adding them

to an existing production-ready model, based on a Random Forest. To showcase the

generalizability of our findings, we additionally test the impact of our features on

five additional popular classifiers. To investigate how the models’ ability to predict

purchase evolves throughout a session, we evaluate all models on 11 session steps

(corresponding to the visits of 10 pages). We are interested in longer sessions because

the outcome of such sessions is more difficult to predict. As we do not want to evaluate

the model’s performance on the very last step, (where the outcome is clear), we set up

a buffer of 2 pages. Therefore, we filter out all the sessions which are shorter than 12

pages. We conclude the section by analyzing the features which contributed most to

the model performance in both the anonymous and the identified setting, and explore

how dynamic and static feature importance change as the session continues.
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Table 6.7: Complete feature set. “Dynamic” indicates that a feature may change during a
session.

Feature Dynamic Baseline

Se
ss

io
n

current page dwell time, mean ✓ ✓

current page dwell time, σ ✓ ✓

page sequence score ✓ ✓

number of pages ✓ ✓

channel type

start hour

week day

device type

device conversion rate

H
is

to
ry

number of orders ✓

days since last purchase ✓

number of sessions

number of devices

device sequence score

switch probability

6.5.1 Experimental Setup

In this section, we discuss the feature sets which we use in the experiments for the

anonymous and the identified setting, the models on which we test the features, and

the evaluation setup.

Feature sets. We start by designing a set of features for purchase prediction in identi-

fied and anonymous user settings. Since our initial analysis demonstrated that about

56% of all sessions are anonymous (see Table 6.1), it is worth to pay special attention

to this category. Based on the findings obtained thus far and on an analysis of best-

performing features available in the literature (Hop, 2013; Lee et al., 2015; Niu et al.,

2017; Seippel, 2018), we compile a feature set presented in the Table 6.7.

We categorize features into two classes: session features and customer history features.

We derive session features from the information of the given session and base customer

history features on the information from previous sessions of the given customer.

Since we run experiments in the anonymous and the identified setting, we use dif-

ferent feature sets for each setting. In the anonymous setting, the information about

the customer is not available and, therefore, we can only use session features. On

the other hand, when a customer is identified, we can use both session and customer

history features. The feature set contains both static and dynamic features. Dynamic
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features can change throughout the session, whereas static features remain constant.

Models. Next, we select models on which we evaluate the features discovered during

the dataset analysis. As our primary model, we use a production-ready classifier. This

is a random forest (RF) with a baseline feature set as described in Table 6.7. Addition-

ally, to showcase the general utility of our feature set, we experiment on additional

models. After reviewing previous work in the domain of purchase prediction (see

Section 6.6), we choose the following models for our experiments: logistic regression

(LR), K-nearest neighbors (KNN), support vector machines (SVM), neural classifier,

and gradient boosted decision tree (GBDT). Each model is trained on the baseline and

extended feature set in both settings.

Prediction setup. Since we want to explore how models’ performances change across

sessions, we select points of a session for which we predict the probability of purchase.

We define a point by the number of pages opened in the session up until the point

of prediction. Overall, we select 11 points of measurement. The first point is at the

very beginning of the session when the user did not open any pages yet. At this point,

the classifier makes a prediction based solely on static features. The following point of

measurement is right after the user opened the first page. The subsequent nine points

happen after the next nine pages. To make the evaluation possible and to ensure that

we do not predict for the very last session page, we filter out sessions with fewer than

12 pages, with 2 pages as a buffer. The buffer is there to avoid the situation when the

model predicts at the very end of a session when the outcome is clear. Therefore, we

filter out all the sessions which are less than 12 pages long. For example, in step 2 we

only have a session with at least 12 actions, which is a hard setting.

Evaluation setup. For both settings, we evaluate model performance with 10-fold

cross-validation. To account for class imbalance, we set class weights to be inversely

proportional to class frequencies and use F1 score as a primary evaluation metric.

6.5.2 Prediction for Anonymous Users

First, we evaluate how the added features influence model performance in the anony-

mous setting, where the user is not known.

Setup. For the anonymous setting, we sampled 22,982 sessions. We use the data to

create a feature set for the baseline model and our model. In the anonymous setting,

there is no available information about customer history, therefore, we only use ses-

sion features (see Table 6.7. As can be seen from the table, the baseline feature set

comprises four dynamic features, whereas the extended feature set offers five extra

features. Since we predict purchase for different points in the session, we compute all

dynamic features for a particular session point on which we evaluate. For each session
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point, we train the baseline and extended model on the obtained feature sets.

Results. The results in Figure 6.7 show that the additional features boost model perfor-

mance across all session steps. The performance boost is especially significant at step

0 when a customer has not opened any pages yet. In general, tree-based models (RF

and GBDT) and the neural classifier demonstrate the highest scores across all steps.

The models are followed by SVM, LR, and KNN classifiers.

The performance of all the models with the baseline feature set improved on step

1. The gain can be explained by the introduction of dynamic session features (step 0

means that the user did not open any pages yet, hence, no dynamic session features).

Conversely, for models with the extended feature set, the introduction of dynamic

features on step 1 does not significantly increase the performance. After step 1, models’

performances reach a plateau.

6.5.3 Prediction of Identified Users

Second, we test models’ performances with baseline and extended feature sets in the

identified setting, when the user is known.

Setup. For the identified setting, we sampled 6,319 sessions. The feature set for this

setting includes session and customer history features (see Table 6.7). During our

experiments, we found out that information about the previous session device (such

as device type and conversion rate) decrease model performance, so we excluded those

features from the training and evaluation sets. This can be explained by the fact that

the information about what kind of device users previously used and what was the

probability of purchase on that device is not relevant for predicting purchase on the

current device. In analogy with the anonymous setting, we prepare feature sets for

each of the eleven session points and train and evaluate the models with the baseline

and extended feature sets.

Results. Figure 6.7 shows the performance of the models. Overall, the performance

of all models for both baseline and extended feature sets and across all steps stays

around 96%. The only exception is the k-nearest neighbors classifier where adding ex-

tra features on step 0 increases the model’s performance by 6.74%. On step 1, however,

the gain from the extended feature set is not present. This can be explained by the

introduction of the dynamic session features.

6.5.4 Feature Importance Analysis

The experimental results raise a natural question that is ’Which features contribute

most to model performance in both settings?’ To answer this question, we look at the
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Figure 6.6: Feature importance for the Random Forest in the anonymous setting (top) and
the identified setting (center), as well as summed for static features in the anonymous setting
(bottom).

feature importance scores of a production-ready classifier which shows one of the best

performances in both settings, random forest.

Figure 6.6 (top) demonstrates that in anonymous setting, day of the week is the

feature with the highest importance. It is followed by three dynamic features (standard

deviation and mean of page dwell time, and Markov page sequence score), and four

static features (starting hour, channel type, device type and conversion rate).

Figure 6.6 (center) shows that in the identified user setting, number of previous

orders, and number of days since last order are the features with the highest rela-

tive importance. Both features describe user historical purchasing behavior what can

explain their high relative importance. The features are followed by three dynamic
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Figure 6.7: Experimental results in anonymous (anon) and identified (iden) setting, across
different session steps, F1.

features (standard deviation and mean of page dwelling time, and Markov page se-

quence score), which also have relatively high importance in the anonymous setting.

The high relative importance of the dynamic session features (standard deviation and

mean of page dwelling time, and Markov page sequence score) in both settings explain

the gain all models with baseline feature set got on step 1 in the anonymous setting

(see Figure 6.7).

Next, we determine how static feature importance changes across sessions. We con-

sider the importance in the anonymous setting because the introduction of dynamic

features in this setting showed an improvement. Figure 6.6 (bottom) shows that static

session feature importance decrease as the session evolves, which entails that the im-

portance of dynamic features increases. On step 0 the cumulative importance of static

features is 100% because there are no dynamic features introduced. However, from

step 1 the relative importance starts to drop. The figure supports the hypothesis that

as the session progresses dynamic features become more important.

6.6 related work

6.6.1 E-Commerce User Purchase Behavior Analysis

Research on understanding online users’ purchasing behavior has been ongoing since

the very beginning of e-commerce (Bellman et al., 1999). Studies have investigated user

motivation (Bellman et al., 1999), factors that influence e-commerce adoption (O’cass

and Fenech, 2003), as well as purchasing behavior (Brown et al., 2003; Hsu et al., 2006),

with a focus on perceived security (Salisbury et al., 2001; George, 2002), the decision-

making process (Senecal et al., 2005), and purchaser profiles (Swinyard and Smith,

2004; Hernández et al., 2011). Besides, there has also been work on user behavior on

content discovery platforms and its relationship to subsequent purchases (Lo et al.,

2016) as well as work dedicated to the identification of a taxonomy of product search
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intents and the prediction of user satisfaction (Su et al., 2018).

Unlike previous work, our study focuses on the exploration of user purchasing

behavior by comparing purchase vs. non-purchase sessions. Besides, we analyze the

data from the perspective of device types, and explore aspects such as session length

and price of the seen products from the perspective of different devices. On top of

that, we also look into the way customer switches between devices.

6.6.2 Purchase Prediction in E-Commerce

The problem of e-commerce user behavior modeling has been studied from various

angles, such as building multiple classifiers based on genetic algorithms (Kim et al.,

2003), mining purchase patterns with association rules and using those patterns for

purchase prediction (Suh et al., 2004). Research has been focused on creating models

robust to noise in session data (Agichtein et al., 2006), and using a recurrent neural

network to predict customer behaviour (Lang and Rettenmeier, 2017).

Sismeiro and Bucklin (2004) predict purchasing task completion for a given user

who completed at least one task earlier, whereas Cheng et al. (2017) explore user

behavior on a content discovery platform to determine intent specificity and time in

the future when a purchase is estimated to take place. Some work in the field focuses

on using queries for purchasing behavior modeling. For instance, Dai et al. (2006)

predict purchase based on input query. Besides using general session data, there has

been work that incorporates demographic data and perceived attributes (Young Kim

and Kim, 2004), scrolling and mouse movements (Guo and Agichtein, 2010), payment

data (Wen et al., 2018), log-trace data (Tao et al., 2019), and phone touch actions (Guo et

al., 2019a). There has been work on analyzing behavioral patterns and the exploration

of different model architectures. In particular, support vector machines, K-nearest

neighbor approach, random forest, and logistic regression were used (Lee et al., 2015;

Suchacka et al., 2015; Niu et al., 2017).

Unlike previous work in this domain, our study focuses on purchase prediction with

two types of users, identified and anonymous. Therefore, we develop two models, run

them in two settings, and evaluate their results. The possibility to experiment with

identified users also allows us to leverage information from previous user sessions,

such as user purchasing history and the number of devices a user owns. In contrast,

anonymous users contribute to a higher share of traffic, which makes it important to

understand their behavior too. Additionally, we explore how the relevance of dynamic

and static features changes as a session progresses.
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6.7 discussion and conclusion

In this study, we have carried out an analysis of user purchase intent in e-commerce.

We have analyzed four weeks of session logs from a European e-commerce platform to

identify signals in user behavior that can imply purchase intent. We have considered

aspects such as session length, day of the week, and session start hour, as well as

information about device, channel, and queries.

In the second part of our study, we have analyzed the relevance of the discovered

signals by running a series of experiments aimed at purchase intent prediction in

the anonymous and identified settings. We tested the features on random forest, the

model which fits production requirements. Additionally, we tested the features on

five other models. The experiments demonstrated the value of the features that we

engineered based on our insights into the data. We explored which features contribute

to performance improvement.

One of the implications of our study is enhanced understanding of purchasing user

behavior in e-commerce. Understanding the behavior is the first step towards model-

ing it, as we demonstrated in the second part of the chapter. Modeling user behavior

can contribute towards reducing friction in the customer journey and, therefore, to

better customer experience. Besides, we explored the topic of detecting the purchase

intent of anonymous users. We showed that, while anonymous users contribute to

more than half of the traffic, their user intent is harder to detect because all the predic-

tions have to be made without knowledge about the prior behavior.

Our research has several limitations; one of them is limited generalizability. Even

though the data we use in our study comes from a dominant e-commerce platform, it

is still only one platform. Hence, it would be interesting to verify the findings against

other e-commerce platforms and explore the differences. Moreover, we sampled four

weeks of data, thereby introducing a sample bias that could make our findings sensi-

tive to unknown temporal or seasonal patterns. Therefore, it would be interesting to

explore if expanding our dataset will lead to new insights. For example, if we had

several months of data, we could explore how user purchase intent changes across dif-

ferent months or seasons. Furthermore, we evaluated our purchase intent prediction

models in an offline setting. The next logical step is to evaluate them in an online

setting.

Future research on the topic includes several directions. First, there is an oppor-

tunity to continue research into general purchase behavior analysis and modeling in

e-commerce. It would be interesting to explore more aspects of purchasing behavior

and try out more models. Another direction for further research concerns predicting

purchase intent for anonymous users. Another exciting direction for further research

includes modeling device-specific purchase behavior. It can include both relatively
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common devices such as PC, smartphone, and tablet, and relatively less popular and

studied devices such as TV or game console.

Therefore, our conclusion for RQ5 is that facilitating product retrieval by predicting

purchase intent in a cross-device setting involves analyzing behavioral signals from

user session logs. Factors such as session duration, timing, device type, and user

queries significantly correlate with purchase intent and can be leveraged early in user

sessions to anticipate purchasing decisions. Predictive insights are particularly chal-

lenging among anonymous users due to the lack of prior behavioral data. Device

transitions play a crucial role in predicting purchase behavior, underscoring the neces-

sity of cross-device analysis in e-commerce platforms.



7
E X T E N D I N G C L I P F O R

C AT E G O R Y-TO - I M A G E R E T R I E VA L

In this chapter we focus on the problem of alignment of textual descriptions of cate-

gories with corresponding visual representations for categories of varying granularity.

In many cases in such scenarios, textual representations of categories may not ade-

quately capture the visual nuances of associated images, leading to mismatches and

suboptimal retrieval results. Hence, ability of information retrieval (IR) systems to

bridge the semantic gap across modalities in such scenario facilitates a more intu-

itive and efficient user experience. Motivated by this problem, we propose a task of

category-to-image (CTI). The task involves retrieving a ranked list of relevant images

corresponding to a given category sampled from a category tree. Hence, we address

the following research question:

RQ6: How do multimodal document representation, encompassing text, image, and

attribute data, impact the performance on the category-to-image retrieval in the con-

text of categories of varying granularity?

To answer this research question we formulate the CTI retrieval task and prepare a

dataset containing textual descriptions, images, and attribute information of products

across categories of varying granularity. We design a multimodal retrieval model

that integrates information from text, image, and attribute modalities, and compare

its performance against baseline models in experimental settings. Our findings help

us understand how combining various modalities impact models performance on the

task.

This chapter was published at the 44
th European Conference on Information Retrieval (ECIR 2022) under

the title “Extending CLIP for Category-to-image Retrieval in E-commerce” (Hendriksen et al., 2022).

123
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7.1 introduction

Multimodal retrieval is an important, understudied problem in e-commerce (Tsagkias

et al., 2020). Even though e-commerce products are associated with rich multi-modal

information, research currently focuses mainly on textual and behavioral signals to

support product search and recommendation. The majority of prior work in multi-

modal retrieval for e-commerce focuses on applications in the fashion domain, such

as recommendation of fashion items (Lin et al., 2019) and cross-modal fashion re-

trieval (Laenen and Moens, 2019; Goei et al., 2021). In the more general e-commerce

domain, multimodal retrieval has not been explored that well yet (Hewawalpita and

Perera, 2019; Li et al., 2020b). The multimodal problem on which we focus is motivated

by the importance of category information in e-commerce. Product category trees are

a key component of modern e-commerce as they assist customers when navigating

across large and dynamic product catalogues (Wirojwatanakul and Wangperawong,

2019; Tagliabue et al., 2020; Kondylidis et al., 2021). Yet, the ability to retrieve an image

for a given product category remains a challenging task mainly due to noisy category

and product data, and the size and dynamic character of product catalogues (Laenen

et al., 2018; Tsagkias et al., 2020).

The category-to-image retrieval task. We introduce the problem of retrieving a ranked

list of relevant images of products that belong to a given category, which we call the

category-to-image (CTI) retrieval task. Unlike image classification tasks that operate on

a predefined set of classes, in the CTI retrieval task we want to be able not only to

understand which images belong to a given category but also to generalize towards

unseen categories. Consider the category “Home decor.” A CTI retrieval should out-

put a ranked list of k images retrieved from the collection of images that are relevant

to the category, which could be anything from images of carpets to an image of a clock

or an arrangement of decorative vases. Use cases that motivate the CTI retrieval task

include (i) the need to showcase different categories in search and recommendation

results (Tsagkias et al., 2020; Tagliabue et al., 2020; Kondylidis et al., 2021); (ii) the task

can be used to infer product categories in the cases when product categorical data is

unavailable, noisy, or incomplete (Yashima et al., 2016); and (iii) the design of cross–

categorical promotions and product category landing pages (Nielsen et al., 2000).

The CTI retrieval task has several key characteristics: (i) we operate with categories

from non-fixed e-commerce category trees, which range from very general (such as

“Automative” or “Home & Kitchen”) to very specific ones (such as “Helmet Liners”

or “Dehumidifiers”). The category tree is not fixed, therefore, we should be able to

generalize towards unseen categories; and (ii) product information is highly multi-

modal in nature; apart from category data, products may come with textual, visual,

and attribute information.
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A model for CTI retrieval. To address the CTI retrieval task, we propose a model

that leverages image, text, and attribute information, CLIP-ITA. CLIP-ITA extends

upon Contrastive Language-Image Pre-Training (CLIP) (Radford et al., 2021). CLIP-

ITA extends CLIP with the ability to represent attribute information. Hence, CLIP-ITA

is able to use textual, visual, and attribute information for product representation.

We compare the performance of CLIP-ITA with several baselines such as unimodal

BM25, bimodal zero-shot CLIP, and MPNet (Song et al., 2020). For our experiments,

we use the XMarket dataset that contains textual, visual, and attribute information of

e-commerce products (Bonab et al., 2021).

Research questions and contributions. We address the following research questions:

(RQ6.1) How do baseline models perform on the CTI retrieval task? Specifically, how

do unimodal and bi-modal baseline models perform? How does the performance dif-

fer w.r.t. category granularity? (RQ6.2) How does a model, named CLIP-I, that uses

product image information for building product representations impact the perfor-

mance on the CTI retrieval task? (RQ6.3) How does CLIP-IA, which extends CLIP-I

with product attribute information, perform on the CTI retrieval task? (RQ6.4) And

finally, how does CLIP-ITA, which extends CLIP-IA with product text information,

perform on the CTI task?

Our main contributions are: (i) We introduce the novel task of CTI retrieval and

motivate it in terms of e-commerce applications. (ii) We propose CLIP-ITA, the first

model specifically designed for this task. CLIP-ITA leverages multimodal product data

such as textual, visual, and attribute data. On average, CLIP-ITA outperforms CLIP-I

on all categories by 217% and CLIP-IA by 269%. We share our code and experimental

settings to facilitate reproducibility of our results.

7.2 related work

7.2.1 Learning Multimodal Embeddings.

Contrastive pre-training has been shown to be highly effective in learning joined em-

beddings across modalities (Radford et al., 2021). By predicting the correct pairing

of image-text tuples in a batch, the CLIP model can learn strong text and image en-

coders that project to joint space. This approach to learning multimodal embeddings

offers key advantages over approaches that use manually assigned labels as supervi-

sion: (i) the training data can be collected without manual annotation; real-world data

in which image-text pairs occur can be used; (ii) models trained in this manner learn

more general representations that allow for zero-shot prediction. These advantages

are appealing for e-commerce, as most public multimodal e-commerce datasets pri-
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marily focus on fashion only (Bonab et al., 2021); being able to train from real-world

data avoids the need for costly data annotation.

We build on CLIP by extending it to category-product pairs, taking advantage of its

ability to perform zero-shot retrieval for a variety of semantic concepts.

7.2.2 Multimodal Image Retrieval

Early work in image retrieval grouped images into a restricted set of semantic cate-

gories and allowed users to retrieve images by using category labels as queries (Smeul-

ders et al., 2000). Later work allowed for a wider variety of queries ranging from

natural language (Hu et al., 2016; Vo et al., 2019), to attributes (Nagarajan and Grau-

man, 2018), to combinations of multiple modalities such as title, description, and tags

(Thomee et al., 2016). Across these multimodal image retrieval approaches we find

three common components: (1) an image encoder, (2) a query encoder, and (3) a simi-

larity function to match the query to images (Radford et al., 2021; Gupta et al., 2020).

Depending on the focus of the work some components might be pre-trained, whereas

the others are optimized for a specific task.

In our work, we rely on pre-trained image and text encoders but learn a new multi-

modal composite of the query to perform CTI retrieval.

7.2.3 Multimodal Retrieval in E-Commerce

Prior work on multimodal retrieval in e-commerce has been mainly focused on cross-

modal retrieval for fashion (Zoghbi et al., 2016; Laenen et al., 2017; Goei et al., 2021).

Other related examples include outfit recommendation (Lin et al., 2019; Laenen and

Moens, 2020; Li et al., 2020c) Some prior work on interpretability for fashion product

retrieval proposes to leverage multimodal signals to improve explainability of latent

features (Liao et al., 2018; Yang et al., 2019). Tautkute et al. (2019) propose a multi-

modal search engine for fashion items and furniture. When it comes to combining

signals for improving product retrieval, Yim et al. (2018) propose to combine prod-

uct images, titles, categories, and descriptions to improve product search, Yamaura

et al. (2019) propose an algorithm that leverages multimodal product information for

predicting a resale price of a second-hand product.

Unlike prior work on multimodal retrieval in e-commerce that mainly focuses on

fashion data, we focus on creating multimodal product representations for the general

e-commerce domain.
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Figure 7.1: Overview of CLIP-ITA. The category encoding pipeline is in purple; the category
information pipeline in green; fsim is a cosine similarity function.

7.3 approach

7.3.1 Task Definition

We follow the same notation as in (Zhang et al., 2022c). The input dataset can be

presented as category-product pairs (xc, xp), where xc represents a product category,

and xp represents information about a product that belongs to the category xc. The

product category xc is taken from the category tree T and is represented as a category

name. The product information comprises titles xt, images xi, and attributes xi, i.e.,

xp = {xi, xt, xa}.
For the CTI retrieval task, we use the target category name xc as a query and we aim

to return a ranked list of top-k images that belong to the category xc.

7.3.2 CLIP-ITA

Figure 7.1 provides a high-level view of CLIP-ITA. CLIP-ITA projects category xc and

product information xp into a d-dimensional multimodal space where the resulting

vectors are respectively c and p. The category and product information is processed

by a category encoding pipeline and product information encoding pipeline. The core

components of CLIP-ITA are the encoding and projection modules. The model consists

out of four encoders: a category encoder, an image encoder, a title encoder, and an

attribute encoder. Besides, CLIP-ITA comprises two non-linear projection heads: the

category projection head and the multimodal projection head.

While several components of CLIP-ITA are based on CLIP (Radford et al., 2021),

CLIP-ITA differs from CLIP in three important ways: (i) unlike CLIP, which operates

on two encoders (textual and visual), CLIP-ITA extends CLIP towards a category en-

coder, image encoder, textual encoder, and attribute encoder; (ii) CLIP-ITA features

two projection heads, one for the category encoding pipeline, and one for the prod-

uct information encoding pipeline; and (iii) while CLIP is trained on text-image pairs,

CLIP-ITA is trained on category-product pairs, where product representation is multi-

modal.

Category Encoding Pipeline. The category encoder ( fc) takes as input category name
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xc and returns its representation hc. More specifically, we pass the category name xc

through the category encoder fc:

hc = fc(xc). (7.1)

To obtain this representation, we use a pre-trained MPNet model (Song et al., 2020).

After passing category information through the category encoder, we feed it to the

category projection head. The category projection head (gc) takes as input a query repre-

sentation hc and projects it into d-dimensional multi-modal space:

c = gc(hc), (7.2)

where c ∈ Rd.

Product Encoding Pipeline. The product information encoding pipeline represents

three encoders, one for every modality, and a product projection head. The image
encoder ( fi) takes as input a product image xi aligned with the category xc. Similarly

to the category processing pipeline, we pass the product image xi through the image

encoder:

hi = fi(xi). (7.3)

To obtain the image representation hi, we use a pre-trained Vision Transformer from

CLIP model. The title encoder ( ft) takes a product title xt as input and returns a title

representation ht:

ht = ft(xt). (7.4)

Similarly to the category encoder fc, we use pre-trained MPNet to obtain the title

representation ht. The attribute encoder ( fa) is a network that takes as input a set of

attributes xa = {a1, a2, . . . , an} and returns their joint representation:

ha = fa(xa) =
1
n

n

∑
i=1

fa(xai). (7.5)

Similarly to the category encoder fc and title encoder ft, we obtain representation of

each attribute with the pre-trained MPNet model. After obtaining title, image and

attribute representations, we pass the representations into the product projection head.

The product projection head (gp) takes as input a concatenation of the image representa-

tion hi, title representation ht, and attribute representation ha and projects the result-

ing vector hp = concat(hi, ht, ha) into multimodal space:

p = gp(hp) = gp(concat(hi, ht, ha)), (7.6)

where p ∈ Rd.

Loss Function. We train CLIP-ITA using bidirectional contrastive loss (Zhang et

al., 2022c). The loss is a weighted combination of two losses: a category-to-product
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contrastive loss and a product-to-category contrastive loss. In both cases the loss is

the InfoNCE loss (Oord et al., 2018). Unlike prior work that focuses on a contrastive

loss between inputs of the same modality (He et al., 2020; Chen et al., 2020a) and

on corresponding inputs of two modalities (Zhang et al., 2022c), we use the loss to

work with inputs from textual modality (category representation) vs. a combination

of multiple modalities (product representation). We train CLIP-ITA on batches of

category-product pairs (xc, xp) with batch size β. For the j-th pair in the batch, the

category-to-product contrastive loss is computed as follows:

ℓ
(c→p)
j = − log

exp( fsim(cj, pj)/τ)

∑
β
k=1 exp( fsim(cj, pk)/τ)

, (7.7)

where fsim(ci, pi) is the cosine similarity, and τ ∈ R+ is a temperature parameter.

Similarly, the product-to-category loss is computed as follows:

ℓ
(p→c)
j = − log

exp( fsim(pj, cj)/τ)

∑
β
k=1 exp( fsim(pj, ck)/τ)

. (7.8)

The resulting contrastive loss is a combination of the two above-mentioned losses:

L =
1
β

β

∑
j=1

(
λℓ

(p→c)
j + (1− λ)ℓ

(c→p)
j

)
, (7.9)

where β represents the batch size and λ ∈ [0, 1] is a scalar weight.

7.4 experimental setup

7.4.1 Dataset.

We use the XMarket dataset recently introduced by Bonab et al. (2021) that contains

textual, visual, and attribute information of e-commerce products as well as a category

tree. For our experiments, we select 38,921 products from the US market. Category

information is represented as a category tree and comprises 5,471 unique categories

across nine levels. Level one is the most general category level, level nine is the most

specific level. Every product belongs to a subtree of categories t ∈ T. In every subtree

t, each parent category has only one associated child category. The average subtree

depth is 4.63 (minimum: 2, maximum: 9). Because every product belongs to a subtree

of categories, the dataset contains 180,094 product-category pairs in total. We use prod-

uct titles as textual information and one image per product as visual information. The

attribute information comprises 228,368 attributes, with 157,049 unique. On average,

every product has 5.87 attributes (minimum: 1, maximum: 24).
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7.4.2 Evaluation Method

To investigate how model performance changes w.r.t. category granularity, for every

product in the dataset, xp, and the corresponding subtree of categories to which the

product belongs, t, we train and evaluate the model performance in three settings:

(i) all categories, where we randomly select one category from the subtree t; (ii) most
general category, where we use only the most general category of the subtree t, i.e.,

the root; and (iii) most specific category, where we use the most specific category of the

subtree t. In total, there are 5,471 categories in all categories setup, 34 categories in

the most general category, and 4,100 in the most specific category setup. We evaluate

every model on category-product pairs (xc, xp) from the test set. We encode each

category and a candidate product data by passing them through category encoding

and product information encoding pipelines. For every category xc we retrieve the

top-k candidates ranked by cosine similarity w.r.t. the target category xc.

Metrics. To evaluate model performance, we use Precision@K where K = {1, 5, 10},
mAP@K where K = {5, 10}, and R-precision.

Baselines. Following (Wang et al., 2021c; Shen et al., 2021; Dai et al., 2020) we use

BM25, MPNet, CLIP as our baselines.

Four experiments. We run four experiments, corresponding to our research questions

as listed at the end of Section 7.1. In Experiment 1 we evaluate the baselines on the CTI

retrieval task (RQ6.1). We feed BM25 corpora that contain textual product information,

i.e., product titles. We use MPNet in a zero-shot manner. For all the products in

the dataset, we pass the product title xt through the model. During the evaluation,

we pass a category xc expressed as textual query through MPNet and retrieve top-

k candidates ranked by cosine similarity w.r.t. the target category xc. We compare

categories of the top-k retrieved candidates with the target category xc. Besides, we

use pre-trained CLIP in a zero-shot manner with a Text Transformer and a Vision

Transformer (ViT) (Dosovitskiy et al., 2021) as configuration. We pass the product

images xi through the image encoder. For evaluation, we pass a category xc through

the text encoder and retrieve top-k image candidates ranked by cosine similarity w.r.t.

the target category xc. We compare categories of the top-k retrieved images with the

target category xc.

In Experiment 2 we evaluate image-based product representations (RQ6.2). After

obtaining results with CLIP in a zero-shot setting, we build product representations

by training on e-commerce data. First, we investigate how using product image data

for building product representations impacts performance on the CTI retrieval task.

To introduce visual information, we extend CLIP in two ways: (1) We use ViT from

CLIP as image encoder fi. We add product projection head gp that takes as an input

product visual information xi ∈ xp. (2) We use the text encoder from MPNet as cate-
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gory encoder fc; we add a category projection head gc on top of category encoder fc

thereby completing category encoding pipeline (see Figure 7.1). We name the result-

ing model CLIP-I. We train CLIP-I on category-product pairs (xc, xp) from the training

set. Note that xp = {xi}, i.e., we only use visual information for building product

representations.

In Experiment 3, we evaluate image- and attribute-based product representations

(RQ6.3). We extend CLIP-I by introducing attribute information to the product infor-

mation encoding pipeline. We add an attribute encoder fa through which we obtain a

representation of product attributes, ha. We concatenate the resulting attribute repre-

sentation with image representation hp = concat(hi, ha) and pass the resulting vector

to the product projection head gp. Thus, the resulting product representation p is

based on both visual and attribute product information. We name the resulting model

CLIP-IA. We train CLIP-IA on category-product pairs (xc, xp) where xp = {xi, xa}, i.e.,

we use visual and attribute information for building product representation.

In Experiment 4, we evaluate image- attribute-, and title-based product represen-

tations (RQ6.4). We investigate how extending the product information processing

pipeline with the textual modality impacts performance on the CTI retrieval task. We

add title encoder ft to the product information processing pipeline and use it to obtain

title representation ht. We concatenate the resulting representation with product im-

age and attribute representations hp = concat(hi, ht, ha). We pass the resulting vector

to the product projection head gp. The resulting model is CLIP-ITA. We train and test

CLIP-ITA on category-product pairs (xc, xp) where xp = {xi, xa, xt}, i.e., we use visual,

attribute, and textual information for building product representations.

Implementation details. We train every model for 30 epochs, with a batch size β = 8

for most general categories, β = 128 — for most specific categories and all categories.

For loss function, we set τ = 1, λ = 0.5. We implement every projection head as non-

linear MLPs with two hidden layers, GELU non-linearities (Hendrycks and Gimpel,

2016) and layer normalization (Ba et al., 2016). We optimize both heads with the

AdamW optimizer (Loshchilov and Hutter, 2019).

7.5 experimental results

7.5.1 Baselines.

Following RQ6.1, we start by investigating how do baselines perform on cross-modal

retrieval. Besides, we investigate how does the performance on the task differs be-

tween the unimodal and the bimodal approach.

The results are shown in Table 7.1. When evaluating on all categories, all the base-
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Table 7.1: Results of Experiments 1–4. The best performance is highlighted in bold.

Model P@1 P@5 P@10 MAP@5 MAP@10 R-precision

All categories (5,471)

BM25 (Jones et al., 2000) 0.01 0.01 0.01 0.01 0.01 0.01

CLIP (Radford et al., 2021) 0.01 0.02 0.02 0.03 0.04 0.02

MPNet (Song et al., 2020) 0.01 0.06 0.06 0.07 0.09 0.05

CLIP-I (Ours) 3.3 3.8 3.79 6.81 7.25 3.67

CLIP-IA (Ours) 2.5 3.34 3.29 5.95 6.24 3.27

CLIP-ITA (Ours) 9.9 13.27 13.43 20.3 20.53 13.42

Most general category (34)

BM25 (Jones et al., 2000) 2.94 4.71 4.71 8.33 8.28 4.48

CLIP (Radford et al., 2021) 11.76 12.35 11.76 16.12 15.18 9.47

MPNet (Song et al., 2020) 14.70 15.8 15.01 18.44 18.78 9.35

CLIP-I (Ours) 17.85 17.14 16.78 19.88 20.14 13.02

CLIP-IA (Ours) 21.42 21.91 22.78 25.59 26.29 20.74

CLIP-ITA (Ours) 35.71 30.95 30.95 35.51 34.28 25.79

Most specific category (4,100)

BM25 (Jones et al., 2000) 0.02 0.02 0.01 0.01 0.01 0.01

CLIP (Radford et al., 2021) 11.92 9.81 9.23 15.12 14.95 8.14

MPNet (Song et al., 2020) 33.36 28.56 26.93 37.43 36.77 25.29

CLIP-I (Ours) 14.06 12.11 11.53 18.24 17.9 11.22

CLIP-IA (Ours) 35.3 30.21 29.32 39.93 39.27 28.86

CLIP-ITA (Ours) 45.85 41.04 40.02 50.04 49.87 39.69

lines perform poorly. For the most general category setting, MPNet outperforms CLIP

on all metrics except R-precision. The most prominent gain is for Precision@10 where

MPNet outperforms CLIP by 28%. CLIP outperforms BM25 on all metrics. For the

most specific category setting, MPNet performance is the highest, BM25 — the lowest.

In particular, MPNet outperforms CLIP by 211% in Precision@10. Overall, MPNet out-

performs CLIP and both models significantly outperform BM25 for both most general

and most specific categories. However, when evaluation is done on all categories, the

performance of all models is comparable. As an answer to RQ6.1, the results suggest

that using information from multiple modalities is beneficial for performance on the

task.
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7.5.2 Image-Based Representations

To address RQ6.2, we compare the performance of CLIP-I with CLIP and MPNet, the

best-performing baseline. Table 7.1, shows the experimental results for Experiment 2.

The biggest performance gains are obtained in “all categories” setting. However, there,

the performance of the baselines was very poor. For the most general categories, CLIP-

I outperforms both CLIP and MPNet. For CLIP-I vs. CLIP, we observe the biggest in-

crease of 51% for Precision@1, for CLIP-I vs. MPNet — 39% in R-precision. In the case

of the most specific categories, CLIP-I outperforms CLIP but loses to MPNet. Over-

all, CLIP-I outperforms CLIP in all three settings and outperforms MPNet except the

most specific categories. Therefore, we answer RQ6.2 as follows: the results suggest

that extension of CLIP by the introduction of product image data for building product

representations has a positive impact on performance on cross-modal retrieval.

7.5.3 Image- and Attribute-Based Representations

To answer RQ6.3, we compare the performance of CLIP-IA with CLIP-I and the base-

lines. The results are shown in Table 7.1. When evaluated on all categories, CLIP-IA

performs worse than CLIP-I but outperforms MPNet. In particular, CLIP-I obtains the

biggest gain relative of 32% on Precision@1 and the lowest gain of 12% on R-precision.

For the most general category, CLIP-IA outperforms CLIP-I and MPNet on all metrics.

More specifically, we observe the biggest gain of 122% on R-precision over MPNet and

the biggest gain of 59% on R-precision for CLIP-I. Similarly, for the most specific cat-

egory, CLIP-IA outperforms both CLIP-I and MPNet. We observe the biggest relative

gain of 138% over CLIP-I. The results suggest that further extension of CLIP by the

introduction of the product image and attribute data for building product representa-

tions has a positive impact on performance on cross-modal retrieval, especially when

evaluated on most specific categories. Therefore, we answer RQ6.3 positively.

7.5.4 Image-, Attribute-, and Title-Based Representations

We compare CLIP-ITA with both CLIP-IA, CLIP-I, and the baselines. The results are

shown in Table 7.1. In general, CLIP-ITA outperforms CLIP-I and CLIP-IA and the

baselines in all settings. When evaluated on all categories, the maximum relative

increase of CLIP-ITA over CLIP-I is 265% in R-precision, the minimum relative increase

is 183% in mAP@10. The biggest relative increase of CLIP-ITA performance over CLIP-

IA is 310% in Precision@1, the smallest relative increase is 229% in mAP@10. For the

most general categories, CLIP-ITA outperforms CLIP-I by 82% and CLIP-IA by 38%.
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Table 7.2: Erroneous CLIP-ITA prediction counts for “same tree” vs. “different tree” predic-
tions per evaluation type.

Same tree Different tree

All categories 1,655 639

The most general category 2 21

The most specific category 127 1,011

Total 1,786 1,671

For most specific categories, we observe the biggest increase of CLIP-ITA over CLIP-I

of 254% in R-precision and the smallest relative increase of 172% on mAP@5. At the

same time, the biggest relative increase of CLIP-ITA over CLIP-IA is a 38% increase

in R-precision and the smallest relative increase is a 27% increase in mAP@5. Overall,

CLIP-ITA wins in all three settings. Hence, we answer RQ6.4 positively.

7.6 error analysis

7.6.1 Distance between Predicted and Target Categories.

We examine the performance of CLIP-ITA by looking at the pairs of the ground-truth

and predicted categories (c, cp) in cases when the model failed to predict the correct

category, i.e., c ̸= cp. This allows us to quantify how far off the incorrect predictions lie

w.r.t. the category tree hierarchy. First, we examine in how many cases target category

c and predicted category cp belong to the same most general category, i.e., belong

to the same category tree; see Table 7.2. In the case of most general categories, the

majority of incorrectly predicted categories belong to a tree different from the target

category tree. For the most specific categories, about 11% of predicted categories

belong to the category tree of the target category. However, when evaluation is done

on all categories, 72% of incorrectly predicted cases belong to the same tree as a target

category.

Next, we turn to the category-predicted category pairs (c, cp) where the incorrectly

predicted category cp belongs to the same tree as target category c. We compute the

distance d between a category used as a query c and a predicted category cp. We

compute the distance between target category c and a top-1 predicted category cp as

the difference between their respective depths d(c, cp) = depth(cp) − depth(c). The

distance d is positive if the depth of the predicted category is bigger than the depth of

the target category, depth(cp) > depth(c), i.e., the predicted category is more specific

than the target category. The setup is mirrored for negative distances.
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Figure 7.2: Error analysis for CLIP-ITA. Distance between target category c and a predicted
category cp when c and cp are in the same tree.

See Figure 7.2. We do not plot the results for the most general category because for

this setting there are only two cases when target category c and a predicted category

cp were in the same tree. In both cases, predicted category cp was more general

than target category c with distance d(c, pc) = 2. In cases when target category c
was sampled from the most specific categories, the wrongly predicted category cp

belonging to the same tree was always more specific than the target category c with

the maximum absolute distance between c and cp, |d(c, cp)| = 4. In 68% of the cases

the predicted category was one level above the target category, for 21% d(c, cp) = −2,

for 7% d(c, cp) = −3, and for 5% d(c, cp) = −4. For the setting with all categories, in

92% of the cases, the predicted category cp was more specific than the target category

c; for 8% the predicted category was more general.

Overall, for the most general category and the most specific category, the majority

of incorrectly predicted categories are located in a category tree different from the one

where the target category was located. For the “all categories” setting, it is the other

way around. When it comes to the cases when incorrectly predicted categories are

in the same tree as a target category, the majority of incorrect predictions are 1 level

more general when the target category is sampled from the most specific categories.

For the “all categories” setting, the majority of incorrect predictions belonging to the

same tree as the target category were more specific than the target category. Our

analysis suggests that efforts to improve the performance of CLIP-ITA should focus

on minimizing the (tree-based) distance between the target and predicted category in

a category tree. This could be incorporated as a suitable extension of the loss function.

7.6.2 Performance on Seen vs. Unseen Categories

Next, we investigate how well CLIP-ITA generalizes to unseen categories. We split

the evaluation results into two groups based on whether the category used as a query

was seen during training or not; see Table 7.3. For the most general categories, CLIP-

ITA is unable to correctly retrieve an image of the product of the category that was

not seen during training at all. For the most specific categories, CLIP-ITA performs
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Table 7.3: CLIP-ITA performance on seen vs. unseen categories.

Model P@1 P@5 P@10 mAP@5 mAP@10 R-precision

All categories (5,471)

CLIP-ITA (unseen cat.) 13.3 18.56 15.55 19.7 19.65 18.52

CLIP-ITA (seen cat.) 10.48 13.95 14.08 21.65 21.65 14.07

Most general category (34)

CLIP-ITA (unseen cat.) 0.0 0.0 0.0 0.0 0.0 0.0

CLIP-ITA (seen cat.) 19.23 20.01 17.31 20.41 20.01 15.73

Most specific category (4,100)

CLIP-ITA (unseen cat.) 27.27 26.44 26.44 27.92 27.92 26.45

CLIP-ITA (seen cat.) 47.83 43.09 42.14 52.41 51.89 41.58

better on seen categories than on unseen categories. We observe the biggest relative

performance increase of 85% in mAP@10 and the smallest relative increase of 57% in

R-precision. When evaluating on all categories, CLIP-ITA performs on unseen cate-

gories better when evaluated on Precision@k (27% higher in Precision@1, 33% higher

in Precision@5, 10% increase in Precision@10) and R-precision (relative increase of

32%). Performance on seen categories is better in terms of mAP@k (10% increase for

both mAP@5 and mAP@10).

Overall, for the most general and most specific categories, the model performs much

better on categories seen during training. For “all categories” setting, however, CLIP-

ITA’s performance on unseen categories is better.

7.7 conclusion
We introduced the task of category-to-image retrieval and motivated its importance in

the e-commerce scenario. In the CTI retrieval task, we aim to retrieve an image of a

product that belongs to the target category. We proposed a model specifically designed

for this task, CLIP-ITA. CLIP-ITA extends CLIP, one of the best performing text-image

retrieval models. CLIP-ITA leverages multimodal product data such as textual, visual,

and attribute data to build product representations. In our experiments, we contrasted

and evaluated different combinations of signals from modalities, using three settings:

on all categories, the most general, and the most specific categories.

We found that combining information from multiple modalities to build product

representation produces the best results on the cross-modal retrieval. CLIP-ITA gives

the best performance both on all categories and on the most specific categories. On
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the most general categories, CLIP-I, a model where product representation is based

on image only, works slightly better. CLIP-I performs worse on the most specific

categories and across all categories. For identification of the most general categories,

visual information is more relevant. Besides, CLIP-ITA is able to generalize to unseen

categories except in the case of most general categories. However, the performance on

unseen categories is lower than the performance on seen categories. Even though our

work is focused on the e-commerce domain, the findings can be useful for other areas,

e.g., digital humanities.

Limitations of our work are due to type of data in the e-commerce domain. In e-

commerce, there is typically one object per image and the background is homogeneous,

textual information is lengthly and noisy; in the general domain, there is typically

more than one object per image, image captions are more informative and shorter.

Future work directions can focus on improving the model architecture. It would be

interesting to incorporate attention mechanisms into the attribute encoder and explore

how it influences performance. Another interesting direction for future work is to

evaluate CLIP-ITA on other datasets outside of the e-commerce domain. Future work

can also focus on minimizing the distance between the target and predicted category

in the category tree.

To summarize, we answer RQ6 by saying that multimodal document representation,

integrating text, image, and attribute data, improves CTI retrieval performance across

categories of varying granularity. The CLIP-ITA model, designed for this task, demon-

strates superior performance by combining multiple modalities. For the most general

categories, models using image information alone perform slightly better, highlighting

the importance of visual cues. However, for more specific categories, the inclusion of

textual and attribute data becomes important, indicating that detailed information is

necessary for accurate retrieval as category specificity increases.

reproducibility

To ensure the reproducibility of the findings presented in this chapter, we have made

our code publicly accessible at https://github.com/mariyahendriksen/ecir2022_c

ategory_to_image_retrieval.
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C O N C L U S I O N

In this thesis, we have focused on multimodal machine learning for information re-

trieval from a vision and language perspective. We covered a variety of challenges

and proposed novel architectures to address them in the context of dense and sparse

retrieval, representation learning and evaluation, and product retrieval.

Dense and Sparse Retrieval In Chapter 2, we focused on assessing the reproducibil-

ity of cross-modal retrieval (CMR) results on scene-centric and object-centric datasets.

We discovered challenges in replicating CMR performance due to variations in data

preprocessing and experimental setups. These findings underscore the need for stan-

dardized benchmarks and methodologies to improve consistency in CMR research.

Meanwhile, in Chapter 3, we introduced a method for transforming dense vision-

language (VL) representations into sparse ones, aiming to enhance computational

efficiency without compromising effectiveness. The results highlighted a promising

trade-off where sparse models achieved competitive performance with reduced com-

putational demands, demonstrating potential scalability benefits for real-world appli-

cations of VL models.

Representation Learning and Evaluation In Chapter 4, we investigated the prob-

lem of shortcut learning for VL contrastive learning (CL) representation learning with

multiple captions per image and proposed a framework to study the problem in a

controlled way. We discovered that contrastive losses tend to prioritize learning easily

detectable features shared between the image and all captions, neglecting other rele-

vant information that might be unique to specific captions. In Chapter 5, we shifted

our focus to evaluating the brittleness of existing benchmarks when evaluated on the

image-text retrieval (ITR) task. We emphasized the limitations of the current evalu-

ation pipeline, advocating for more refined evaluation frameworks. These insights

underline the importance of developing comprehensive evaluation protocols that bet-

ter reflect real-world complexities.

139
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Product Retrieval In Chapter 6, we focused on facilitating product retrieval by pre-

dicting user purchase intent through behavioral analysis of e-commerce session logs.

The findings identified key behavioral signals that correlate with purchasing decisions.

These insights offer practical implications for enhancing user engagement and conver-

sion strategies in e-commerce platforms, emphasizing the significance of cross-device

analysis for comprehensive user behavior understanding. In Chapter 7, we exam-

ined multimodal product retrieval in e-commerce contexts, integrating textual, image,

and attribute data to improve category-to-image (CTI) performance across product

categories of varying granularity. We demonstrated the varying impacts of different

modalities, underscoring the importance of tailoring retrieval models to leverage spe-

cific modal strengths based on product category characteristics.

In this final chapter, we revisit the main research questions raised in Chapter 1. We

summarise our findings for these questions in Section 8.1. We conclude this chapter,

and this thesis, with directions for future work in Section 8.2.

8.1 summary of findings

RQ1 To what extent are the published image-text cross-modal retrieval results re-

producible, replicable, and generalizable across scene-centric and object-centric

datasets?

In Chapter 2, we conducted a reproducibility study involving two state-of-the-art

(SOTA) CMR models, CLIP and X-VLM, evaluating their performance on both scene-

centric and object-centric datasets. We focused on reproducibility, replicability, and

generalizability of the results. We discovered that reproducibility of CMR results on

scene-centric datasets is challenging, with partial success observed for certain tasks

and metrics. We attribute the discrepancy to differences in data preprocessing and

experimental setups. We found out that the replicability of relative performance

from scene-centric to object-centric datasets is limited, with significant discrepancies

in model performance, highlighting the importance of dataset characteristics. The

generalizability of the CMR methods across different dataset types is constrained. Per-

formance on object-centric datasets tends to be lower, suggesting that current models

are not adequately robust across diverse types of data.

Thus, our response to RQ1 is that while relative performance results in image-text

CMR are partially reproducible and replicable across certain datasets, particularly

scene-centric ones, they face challenges on object-centric datasets. The absolute perfor-

mance scores on object-centric datasets are lower compared to scene-centric datasets,

emphasising the need for further exploration and evaluation of CMR methods on di-
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verse benchmark datasets. Reproducibility on scene-centric datasets is a challenge,

with partial success attributed to differences in data preprocessing and experimental

setups. Replicability from scene-centric to object-centric datasets is limited, indicating

discrepancies in model performance due to dataset characteristics. Generalizability

across different dataset types is constrained, with lower performance on object-centric

datasets suggesting that current models lack robustness across diverse data types.

RQ2 How can learned sparse retrieval techniques be applied in the vision-language

domain?

In Chapter 3, we propose a method for multimodal learned sparse retrieval, focusing

on converting dense representations into sparse ones within the VL domain. The

method shows promising results in terms of both effectiveness and efficiency. We

discovered that in terms of efficiency, our models achieve competitive performance

compared to the original dense models. Relaxing the sparsity regularization allows

the model to capture more information, leading to effectiveness closer to the dense

baseline. When it comes to efficiency, our models are more efficient than dense models,

requiring fewer FLOPs for retrieval. This efficiency increases with stricter sparsity

regularization. Overall, we point out a trade-off between effectiveness and efficiency.

As we prioritize efficiency, effectiveness slightly drops.

Consequently, we conclude for RQ2 that in the vision-language domain, learned

sparse retrieval techniques can be applied by converting dense representations into

sparse ones, showing promising results in both effectiveness and efficiency.

RQ3 In the context of vision-language representation learning with multiple captions

per image, to what extent does the presence of a shortcut hinder learning task-

optimal representations?

In Chapter 4, we explored the behaviour of contrastive learning approaches in VL in

the context of shortcut learning, especially when dealing with datasets where each

image has multiple captions. We proposed a novel framework, synthetic shortcuts for

vision-language (SVL), to analyze this problem in a controlled setting. We discovered

that contrastive losses tend to prioritize learning easily detectable features shared be-

tween the image and all captions, neglecting other relevant information that might be

unique to specific captions. This dependence on shortcuts hinders the model from

achieving task-optimal representations that capture the full spectrum of information

within the image and its captions.

Hence, our findings for RQ3 indicate that in vision-language representation learn-

ing with multiple captions per image, the presence of shortcuts hinders the learning of

task-optimal representations. We assume that this happens because contrastive learn-

ing approaches prioritize easily detectable features shared between the image and
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all captions, neglecting unique information specific to individual captions. This de-

pendence on shortcuts prevents models from capturing the full spectrum of relevant

information within the image and its captions, resulting in suboptimal representations.

RQ4 How can we improve the evaluation and benchmarking of vision-language mod-

els on the image-text retrieval task?

In Chapter 5, we explored the topic of the brittleness of existing evaluation bench-

marks for the ITR task. We highlight two main concerns: the granularity of exist-

ing benchmarks and the limitations of current evaluation metrics. We analyzed two

ITR benchmarks and compared them with their augmented counterparts. We evalu-

ated four SOTA VL models of the datasets. We introduced an evaluation framework

that incorporates a taxonomy of perturbations designed to test the model’s robustness

to changes in input data. We discovered that finer-grained datasets improve vision-

language models (VLMs) performance on the task. Besides, we discovered that VLMs

are sensitive to input changes: Introducing variations to the input texts generally de-

creased VLM performance. However, models performed better on the finer-grained

datasets even with these variations. These findings highlight the importance of using

more detailed datasets and robust evaluation methods to accurately assess VLMs ca-

pabilities. This will help develop VLMs that are more robust to variability in model

input.

Therefore, our answer to RQ4 is that improving the evaluation and benchmarking

process of vision-language models on the image-text retrieval task involves addressing

the granularity of benchmarks and limitations of current evaluation metrics. Finer-

grained datasets enhance model performance even when input variations are intro-

duced, highlighting the sensitivity of models to changes in input data. An evaluation

framework incorporating a taxonomy of perturbations can test model robustness, em-

phasizing the need for detailed datasets and robust evaluation methods to accurately

assess model capabilities and develop models resilient to input variability.

RQ5 How can we facilitate product retrieval by predicting purchase intent in cross-

device setting?

In Chapter 6, we analyzed user purchase intent within the realm of e-commerce. We

examined user session logs spanning four weeks from a European e-commerce plat-

form. Our analysis aimed to identify behavioral signals that would facilitate product

retrieval by indicating purchase intent. We considered such factors as session duration,

day of the week, session start time, device type, channel of access, and user queries.

Subsequently, we explored the relevance of these identified signals through a series of

experiments tailored to predict purchase intent in both anonymous and identified user

settings. These experiments employed various models, including the random forest
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model suited for production environments, along with five other models to ascertain

the robustness and efficacy of our engineered features. Our investigation provided

insights into purchasing behavior patterns within e-commerce contexts. We demon-

strated that certain behavioral cues—such as session duration and timing—strongly

correlate with user purchase intent. Notably, we found that these predictive insights

can be leveraged early in user sessions, aiding in the anticipation of purchasing de-

cisions. Additionally, our study underscored the challenges in discerning purchase

intent among anonymous users, given the absence of prior behavioral data. Despite

these challenges, our findings emphasize the significant role of device transitions in

predicting purchase behavior, highlighting the necessity of cross-device analysis in

e-commerce platforms.

Overall, our conclusion for RQ5 is that facilitating product retrieval by predicting

purchase intent in a cross-device setting involves analyzing behavioral signals from

user session logs. Factors such as session duration, timing, device type, and user

queries significantly correlate with purchase intent and can be leveraged early in user

sessions to anticipate purchasing decisions. Predictive insights are particularly chal-

lenging among anonymous users due to the lack of prior behavioral data. Device

transitions play a crucial role in predicting purchase behavior, underscoring the neces-

sity of cross-device analysis in e-commerce platforms.

RQ6 How do multimodal document representation, encompassing text, image, and

attribute data, impact the performance on the category-to-image retrieval in the

context of categories of varying granularity?

In Chapter 7, we conducted a series of experiments on an adapted e-commerce dataset

containing textual descriptions, images, and attribute information of products across a

diverse set of categories. We established several unimodal and bimodal baselines and

implemented a multimodal retrieval model CLIP-ITA. We discovered that the multi-

modal document representation, which integrates text, image, and attribute data, gen-

erally improves the performance of the CTI retrieval task across categories of varying

granularity. We attribute this improvement to the richer context provided by combin-

ing different modalities, which helps in accurately identifying and retrieving relevant

images. In addition, the impact of multimodal representations varies with category

granularity. For the most general categories, models that rely solely on image informa-

tion tend to perform slightly better. This highlights the significance of visual cues in

recognizing broader product categories, where detailed textual or attribute data might

not be as important. However, the inclusion of textual and attribute data becomes

more critical for specific categories. This suggests that the level of detail required for

accurate retrieval increases with the specificity of the category.

To summarize, we answer RQ6 by saying that multimodal document representation,
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integrating text, image, and attribute data, improves CTI retrieval performance across

categories of varying granularity. The CLIP-ITA model, designed for this task, demon-

strates superior performance by combining multiple modalities. For the most general

categories, models using image information alone perform slightly better, highlighting

the importance of visual cues. However, for more specific categories, the inclusion of

textual and attribute data becomes important, indicating that detailed information is

necessary for accurate retrieval as category specificity increases.

8.2 future work

The topic of multimodal machine learning in the context of information retrieval opens

numerous research avenues, some of which we have touched upon throughout this

thesis. We believe that these areas present interesting research opportunities. In this

section, we highlight potential directions for future work that have not been explicitly

addressed yet.

Dense and Sparse Retrieval We have investigated the reproducibility of CMR re-

sults on scene-centric and object-centric datasets in Chapter 2. To gain a deeper under-

standing of models on the CMR task, an important next step is to expand the list of

scene-centric and object-centric datasets used for investigation and increase the num-

ber of models used. Investigating CMR performance on a wider range of datasets

will contribute to assessing the model’s generalizability and robustness. Furthermore,

exploring beyond the zero-shot scenario into few-shot and multi-shot settings will pro-

vide insights into the model’s adaptability to limited data conditions, and would allow

us to gain a more comprehensive picture of the model’s capabilities on the CMR task.

Similarly, when it comes to multimodal learned sparse retrieval (MLSR) (Chapter 3),

increasing the number of datasets and dense backbones as well as extending the set of

modalities towards video and audio would provide a more comprehensive evaluation

of the proposed model.

Representation Learning and Evaluation Building upon our work on shortcuts for

contrastive VL representation learning with multiple captions per image (Chapter 4),

we propose several directions for future research. Developing optimization objectives

specifically tailored to address shortcut learning in this context is important for train-

ing models that rely on shortcuts less. Investigating alternative training strategies

and loss functions can further improve model robustness and generalization. Addi-

tionally, combining existing shortcut reduction methods or exploring novel techniques

has the potential to achieve significant performance gains. Finally, extending the SVL

framework to better capture nuances and complexities of natural data is another im-

portant and promising direction. This would allow a more comprehensive exploration
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of shortcut learning and the understanding of the implications in real-world scenarios

and datasets.

The first next step towards improving the reliability of the ITR evaluation bench-

marks (Chapter 5) would imply expanding upon the proposed framework. The expan-

sion can go in several directions. First, developing additional methods to create more

realistic text alterations. Second, evaluating a broader range of datasets and VLM will

strengthen the generalizability of the findings and provide insights for the develop-

ment of more robust models. Third, expanding the number of datasets and going

beyond image and text data would make the framework more comprehensive. Finally,

evaluating a wider range of VLM with various architectures and training methodolo-

gies would provide more generalizable insights into how these models perform under

different conditions.

Product Retrieval Regarding the topic of understanding and modelling user intents

across multiple devices (Chapter 6), expanding the analysis of general cross-device

user search behavior within e-commerce is a promising direction. This implies inves-

tigating additional facets of user behavior and experimenting with diverse user intent

modeling approaches beyond those explored in the study. Besides, further exploration

of device-specific user behavior—across both commonly used devices like PCs, smart-

phones, and tablets, as well as less studied devices such as TVs and game consoles

presents an interesting direction for further research. Such investigation can lead to

more comprehensive and accurate intent prediction.

Given the investigation on CTI retrieval carried out in Chapter 7, one promising

direction for future work relates to validating the robustness and generalizability of

the proposed model by evaluating its performance on diverse datasets outside the

e-commerce domain, such as those from digital humanities, medical image retrieval,

or multimedia content analysis. Improving the model’s generalization to unseen cat-

egories is another important challenge. Besides, leveraging additional training data,

advanced transfer learning techniques, or external knowledge sources can enhance the

model’s ability to handle unseen concepts.

8.3 final remarks

In this thesis we have explored multimodal machine learning for information retrieval

from a vision and language perspective. We have adressed a range of challenges within

the domains of dense and sparse retrieval, representation learning and evaluation, and

product retrieval. By developing novel methods and evaluating existing frameworks,

we have contributed to a more nuanced understanding of VLMs robustness, efficiency,

and generalizability in the context of information retrieval. This journey is far from
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complete, and the directions outlined in the future work open up exciting possibilities

for continued research that can push the boundaries of what these models can achieve

in complex and dynamic environments.
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S U M M A R Y

In this thesis, we focus on multimodal machine learning within the context of infor-

mation retrieval as the main task. We focus on vision and language as core modalities.

The investigation centers around three primary areas: (i) dense and sparse retrieval,

(ii) representation learning and evaluation, and (iii) product retrieval. Each of the

chapters in the thesis is driven by one or more of these themes.

In Chapter 2, we investigate the reproducibility of image-text cross-modal retrieval

models across scene-centric and object-centric datasets. While most research focuses

on scene-centric data, we examine the less explored object-centric domain. By evalu-

ating state-of-the-art cross-modal retrieval models on both dataset types, we identify

challenges in replicating results on object-centric data. This underscores the need for

standardized benchmarks and methodologies to improve consistency in cross-modal

retrieval research.

In Chapter 3, we focus on multimodal learned sparse retrieval and explore how

sparsifying dense vectors affect model performance on the image-text retrieval task.

We identify the phenomena of dimension co-activation and semantic deviation and

propose metrics to quantify them. We propose a method of transforming dense vision-

language representations into sparse ones and demonstrate that our approach main-

tains competitiveness with dense models while improving computational efficiency.

We demonstrate how controlled expansion can mitigate dimension co-activation and

semantic deviation, contributing to a better understanding of sparsification in multi-

modal retrieval.

In Chapter 4, we investigate shortcut learning in vision-language representation

learning with multiple captions per image. We define shortcut learning as the use

of easily detectable features that do not fully represent the task’s information. We

introduce the framework for synthetic shortcuts in vision-language models to ana-

lyze the reliance on synthetic shortcuts during training and evaluation, showing that

contrastive vision-language methods often depend on shortcuts, neglecting all task-

relevant information. The study underscores the need to address shortcut learning to

improve the robustness of vision-language representation learning.

In Chapter 5, we focus on improving the evaluation of vision-language models on

the image-text retrieval task in the context of concept granularity. We analyze the con-

cept granularity of existing benchmarks and propose a novel evaluation framework
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166 summary

that comprises a taxonomy of perturbations and a cross-modal evaluation metric. We

evaluate four state-of-the-art vision-language models on the benchmark, investigate

the impact of concept granularity on performance, and advocate for a refined evalua-

tion pipeline that better reflects real-world complexities.

In Chapter 6, we tackle the problem of improving product retrieval by predict-

ing purchase intent in cross-device scenarios, distinguishing between anonymous and

identified sessions. We analyze session logs from a European e-commerce platform to

identify purchase intent signals and develop predictive models that consider session-

based and historical features. We demonstrate that purchase intent can be predicted

early in the session, with users often switching to devices with screens for final pur-

chases. This work contributes to our understanding of user behaviour across devices

for both anonymous and identified sessions.

Finally, in Chapter 7, we propose and motivate category-to-image retrieval task and

explore the impact of multimodal product representations on this task. We combine

textual, visual, and attribute information, and investigate their impact on performance

in the context of categories of varying granularity. Experiments demonstrate that mul-

timodal representations generally improve performance, although image-only models

can outperform multimodal ones for general categories. The findings highlight the

importance of considering the interplay between different modalities when building

retrieval models.



S A M E N VAT T I N G

In dit proefschrift richten we ons op multimodale machine learning binnen de context

van informatieophaling als hoofdtaak. We concentreren ons op visie en taal als kern-

modaliteiten. Het onderzoek draait om drie primaire gebieden: (i) dense and sparse
retrieval, (ii) representation learning and evaluation, en (iii) product retrieval. In elk van de

hoofdstukken van dit proefschrift wordt één van deze thema’s behandeld.

In Hoofdstuk 2 onderzoeken we de reproduceerbaarheid van image-text cross-modal
retrieval modellen over scène-centrische en object-centrische datasets. Terwijl het

meeste onderzoek zich richt op scène-centrische data, bekijken wij het minder ver-

kende object-centrische domein. Door state-of-the-art cross-modal retrieval modellen op

beide datasettypes te evalueren, identificeren we problemen bij het repliceren van re-

sultaten op object-centrische data. Dit benadrukt de noodzaak van gestandaardiseerde

benchmarks en methodologieën om de consistentie in cross-modal retrieval onderzoek te

verbeteren.

In Hoofdstuk 3 richten we ons op multimodal learned sparse retrieval en onderzoeken

we hoe het uitdunnen van dichte vectoren de modelprestaties op de image-text retrieval
taak beïnvloedt. We identificeren het fenomeen van dimensie-coactivatie en seman-

tische afwijking, en stellen metrieken voor om deze te kwantificeren. We stellen een

methode voor om dichte vision-language representaties om te zetten in dunne represen-

taties en laten zien dat onze benadering de goede concurrentiepositie met dichte mod-

ellen behoudt terwijl de rekenefficiëntie verbetert. We tonen aan hoe gecontroleerde ex-

pansie dimensie-coactivatie en semantische afwijking kan verminderen, wat bijdraagt

aan een beter begrip van uitdunning in multimodale ophaling.

In Hoofdstuk 4 onderzoeken we shortcut learning in vision-language representation
learning met meerdere labels per afbeelding. We definiëren shortcut learning als het

gebruik maken van gemakkelijk detecteerbare kenmerken die niet de volledige infor-

matie van de taak representeren. We introduceren het framework for synthetic shortcuts
in vision-language models om het gebruik van synthetische shortcuts tijdens training en

evaluatie te analyseren, en laten zien dat contrastieve vision-language methoden vaak

afhankelijk zijn van shortcuts, waardoor taakrelevante informatie wordt verwaarloosd.

De studie benadrukt de noodzaak om shortcut learning te beperken om de robuustheid

van vision-language representatieleren te verbeteren.

In Hoofdstuk 5 richten we ons op het verbeteren van de evaluatie van vision-language
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168 samenvatting

modellen op de image-text retrieval taak in de context van conceptgranulariteit. We

analyseren de conceptgranulariteit van bestaande benchmarks en stellen een nieuw

evaluatiekader voor dat een taxonomie van verstoringen en een cross-modale evalua-

tiemetriek omvat. We evalueren vier state-of-the-art vision-language modellen op de

benchmark, onderzoeken de impact van conceptgranulariteit op prestaties, en pleiten

voor een verfijnde evaluation pipeline die beter de complexiteit van de realiteit weer-

spiegelt.

In Hoofdstuk 6 pakken we het probleem aan van het voorspellen van koopintentie

in cross-device scenario’s, waarbij we onderscheid maken tussen anonieme en geïden-

tificeerde sessies. We analyseren sessielogs van een Europees e-commerce platform

om koopintentiesignalen te identificeren en ontwikkelen voorspellende modellen die

sessiegebaseerde en historische kenmerken in overweging nemen. We tonen aan dat

koopintentie vroeg in de sessie kan worden voorspeld, waarbij gebruikers vaak over-

schakelen naar apparaten met grote schermen voor de definitieve aankopen. Dit werk

draagt bij aan het begrip van gebruikersgedrag met meerdere apparaten voor zowel

anonieme als geïdentificeerde sessies.

Tot slot, in Hoofdstuk 7 stellen we de category-to-image retrieval taak voor en on-

derzoeken we de impact van multimodale productrepresentaties op deze taak. We

combineren tekstuele, visuele en attribuutinformatie en onderzoeken hun impact op

prestaties in de context van categorieën met verschillende granulariteit. Experimenten

tonen aan dat multimodale representaties over het algemeen de prestaties verbeteren,

hoewel modellen die alleen afbeeldingen gebruiken multimodale modellen kunnen

overtreffen voor algemene categorieën. De bevindingen benadrukken het belang van

het overwegen van de wisselwerking tussen verschillende modaliteiten bij het bouwen

van retrieval models.


